The search session has expired. Please query the service again.
This paper is devoted to the study of traveling waves for monotone evolution systems of bistable type. In an abstract setting, we establish the existence of traveling waves for discrete and continuous-time monotone semiflows in homogeneous and periodic habitats. The results are then extended to monotone semiflows with weak compactness. We also apply the theory to four classes of evolution systems.
We study here some asymptotic models for the propagation of internal and surface waves in a two-fluid system. We focus on the so-called long wave regime for one-dimensional waves, and consider the case of a flat bottom. Following the method presented in [J.L. Bona, T. Colin and D. Lannes, Arch. Ration. Mech. Anal. 178 (2005) 373–410] for the one-layer case, we introduce a new family of symmetric hyperbolic models, that are equivalent to the classical Boussinesq/Boussinesq system displayed in [W. Choi...
We study here some asymptotic models for the propagation of internal and surface waves in a two-fluid system. We focus on the so-called long wave regime for one-dimensional waves, and consider the case of a flat bottom. Following the method presented in [J.L. Bona, T. Colin and D. Lannes,
Arch. Ration. Mech. Anal.178 (2005) 373–410] for the one-layer case, we introduce a new family of symmetric hyperbolic models, that are equivalent to the classical Boussinesq/Boussinesq system displayed in [W. Choi...
A branching random motion on a line, with abrupt changes of direction,
is studied. The branching mechanism, being independent
of random motion, and intensities of reverses are defined by a particle's
current direction. A solution of a certain hyperbolic system of coupled
non-linear equations (Kolmogorov type backward equation) has
a so-called McKean representation via such processes.
Commonly this system possesses travelling-wave solutions.
The convergence of solutions with Heaviside terminal...
Currently displaying 1 –
4 of
4