The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The systems of differential equations whose solutions exactly coincide with Bethe ansatz solutions for generalized Gaudin models are constructed. These equations are called the generalized spectral Riccati equations, because the simplest equation of this class has a standard Riccatian form. The general form of these equations is , i=1,..., r, where denote some homogeneous polynomials of degrees constructed from functional variables and their derivatives. It is assumed that . The problem...
This is the first of three papers on the geometry of KDV. It presents what purports to be a foliation of an extensive function space into which all known invariant manifolds of KDV fit naturally as special leaves. The two main themes are addition (each leaf has its private one) and unimodal spectral classes (each leaf has a spectral interpretation).
Currently displaying 1 –
4 of
4