The search session has expired. Please query the service again.
The purpose of this paper is to show that if σ is the maximal spectral type of Chacon’s transformation, then for any d ≠ d’ we have . First, we establish the disjointness of convolutions of the maximal spectral type for the class of dynamical systems that satisfy a certain algebraic condition. Then we show that Chacon’s automorphism belongs to this class.
For n ≥ 1 we consider the class JP(n) of dynamical systems each of whose ergodic joinings with a Cartesian product of k weakly mixing automorphisms (k ≥ n) can be represented as the independent extension of a joining of the system with only n coordinate factors. For n ≥ 2 we show that, whenever the maximal spectral type of a weakly mixing automorphism T is singular with respect to the convolution of any n continuous measures, i.e. T has the so-called convolution singularity property of order n,...
Soit U une fonction définie sur un ensemble fini E muni d'un
noyau markovien irréductible M. L'objectif du papier est de comparer
théoriquement deux procédures stochastiques de minimisation globale de U :
le recuit simulé et un algorithme génétique.
Pour ceci on se placera dans la situation idéalisée d'une infinité de particules disponibles
et nous ferons
une hypothèse commode d'existence de suffisamment de symétries du cadre (E,M,U).
On verra notamment que contrairement au recuit simulé, toute...
Currently displaying 1 –
3 of
3