The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this article we prove that the fibration of by potentials which are isospectral for the 1-dimensional periodic Schrödinger equation, is trivial. This result can be applied, in particular, to -gap solutions of the Korteweg-de Vries equation (KdV) on the circle: one shows that KdV, a completely integrable Hamiltonian system, has global action-angle variables.
Let be the tent map with slope a. Let c be its turning point, and the absolutely continuous invariant probability measure. For an arbitrary, bounded, almost everywhere continuous function g, it is shown that for almost every a, . As a corollary, we deduce that the critical point of a quadratic map is generically not typical for its absolutely continuous invariant probability measure, if it exists.
Currently displaying 1 –
3 of
3