The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
                     
          
            
              
                The search session has expired. Please query the service again.
               
            
            
                      
                           
        
      
        
	
	
        
    
		
			
			
                                             
                
                    
                    
                
                
    			
    				
                    
    	            
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
      A number of recent works have sought to generalize the Kolmogorov-Sinai entropy of probability-preserving transformations to the setting of Markov operators acting on the integrable functions on a probability space (X,μ). These works have culminated in a proof by Downarowicz and Frej that various competing definitions all coincide, and that the resulting quantity is uniquely characterized by certain abstract properties.
      
      On the other hand, Makarov has shown that this 'operator...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We study the notion of ε-independence of a process on finitely (or countably) many states and that of ε-independence between two processes defined on the same measure preserving transformation. For that we use the language of entropy. First we demonstrate that if a process is ε-independent then its ε-independence from another process can be verified using a simplified condition. The main direction of our study is to find natural examples of ε-independence. In case of ε-independence of one process,...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Basic ergodic properties of the ELF class of automorphisms, i.e. of the class of ergodic automorphisms whose weak closure of measures supported on the graphs of iterates of T consists of ergodic self-joinings are investigated. Disjointness of the ELF class with: 2-fold simple automorphisms, interval exchange transformations given by a special type permutations and time-one maps of measurable flows is discussed. All ergodic Poisson suspension automorphisms as well as dynamical systems determined...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We construct a class of rank-one infinite measure-preserving transformations such that for each transformation T in the class, the cartesian product T × T is ergodic, but the product  is not. We also prove that the product of any rank-one transformation with its inverse is conservative, while there are infinite measure-preserving conservative ergodic Markov shifts whose product with their inverse is not conservative.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
This work provides rates of convergence in the Darling-Kac law for infinite measure preserving Pomeau-Manneville (unit interval) maps. Along the way we obtain error rates for the stable law associated with the first return map and the first return time to some suitable set inside the unit interval.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We establish new exponential inequalities for partial sums of random fields. Next, using classical chaining arguments, we give sufficient conditions for partial sum processes indexed by large classes of sets to converge to a set-indexed brownian motion. For stationary fields of bounded random variables, the condition is expressed in terms of a series of conditional expectations. For non-uniform -mixing random fields, we require both finite fourth moments and an algebraic decay of the mixing coefficients....
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We establish new exponential inequalities for partial sums of random fields. Next, using classical
chaining arguments, we give sufficient conditions for partial sum processes indexed by large classes of
sets to converge to a set-indexed Brownian motion. For stationary fields of bounded random variables, the
condition is expressed in terms of a series of conditional expectations. For non-uniform ϕ-mixing
random fields, we require both finite fourth moments and an algebraic decay of the mixing coefficients.
...
    			                    
    			                 
    		                
    		                
    		            
    			    			
    			 
 
    			
    				Currently displaying 1 – 
                                        8 of 
                                        8