On extending solutions of a functional equation.
We find all continuous iterative roots of nth order of a Sperner homeomorphism of the plane onto itself.
K. Baron and Z. Kominek [2] have studied the functional inequality f(x+y) - f(x) - f(y) ≥ ϕ (x,y), x, y ∈ X, under the assumptions that X is a real linear space, ϕ is homogeneous with respect to the second variable and f satisfies certain regularity conditions. In particular, they have shown that ϕ is bilinear and symmetric and f has a representation of the form f(x) = ½ ϕ(x,x) + L(x) for x ∈ X, where L is a linear function. The purpose of the present...
Let G be a locally compact group. Let σ be a continuous involution of G and let μ be a complex bounded measure. In this paper we study the generalized d'Alembert functional equationD(μ) ∫G f(xty)dμ(t) + ∫G f(xtσ(y))dμ(t) = 2f(x)f(y) x, y ∈ G;where f: G → C to be determined is a measurable and essentially bounded function.