Displaying 501 – 520 of 2641

Showing per page

Convex-like inequality, homogeneity, subadditivity, and a characterization of L p -norm

Janusz Matkowski, Marek Pycia (1995)

Annales Polonici Mathematici

Let a and b be fixed real numbers such that 0 < mina,b < 1 < a + b. We prove that every function f:(0,∞) → ℝ satisfying f(as + bt) ≤ af(s) + bf(t), s,t > 0, and such that l i m s u p t 0 + f ( t ) 0 must be of the form f(t) = f(1)t, t > 0. This improves an earlier result in [5] where, in particular, f is assumed to be nonnegative. Some generalizations for functions defined on cones in linear spaces are given. We apply these results to give a new characterization of the L p -norm.

Criterion of p -criticality for one term 2 n -order difference operators

Petr Hasil (2011)

Archivum Mathematicum

We investigate the criticality of the one term 2 n -order difference operators l ( y ) k = Δ n ( r k Δ n y k ) . We explicitly determine the recessive and the dominant system of solutions of the equation l ( y ) k = 0 . Using their structure we prove a criticality criterion.

Curvature on a graph via its geometric spectrum

Paul Baird (2013)

Actes des rencontres du CIRM

We approach the problem of defining curvature on a graph by attempting to attach a ‘best-fit polytope’ to each vertex, or more precisely what we refer to as a configured star. How this should be done depends upon the global structure of the graph which is reflected in its geometric spectrum. Mean curvature is the most natural curvature that arises in this context and corresponds to local liftings of the graph into a suitable Euclidean space. We discuss some examples.

D'Alembert's functional equation on groups

Henrik Stetkær (2013)

Banach Center Publications

Given a (not necessarily unitary) character μ:G → (ℂ∖0,·) of a group G we find the solutions g: G → ℂ of the following version of d’Alembert’s functional equation g ( x y ) + μ ( y ) g ( x y - 1 ) = 2 g ( x ) g ( y ) , x,y ∈ G. (*) The classical equation is the case of μ = 1 and G = ℝ. The non-zero solutions of (*) are the normalized traces of certain representations of G on ℂ². Davison proved this via his work [20] on the pre-d’Alembert functional equation on monoids. The present paper presents a detailed exposition of these results working directly...

Currently displaying 501 – 520 of 2641