Displaying 981 – 1000 of 2641

Showing per page

Jordan *-derivation pairs on standard operator algebras and related results

Dilian Yang (2005)

Colloquium Mathematicae

Motivated by Problem 2 in [2], Jordan *-derivation pairs and n-Jordan *-mappings are studied. From the results on these mappings, an affirmative answer to Problem 2 in [2] is given when E = F in (1) or when 𝓐 is unital. For the general case, we prove that every Jordan *-derivation pair is automatically real-linear. Furthermore, a characterization of a non-normal prime *-ring under some mild assumptions and a representation theorem for quasi-quadratic functionals are provided.

Koniec chaosu?

Pavel Brunovský (1995)

Pokroky matematiky, fyziky a astronomie

Kurepa's functional equation on semigroups.

Bruce R. Ebanks (1982)

Stochastica

The functional equation to which the title refers is:F(x,y) + F(xy,z) = F(x,yz) + F(y,z),where x, y and z are in a commutative semigroup S and F: S x S --> X with (X,+) a divisible abelian group (Divisibility means that for any y belonging to X and natural number n there exists a (unique) solution x belonging to X to nx = y).

La filtration canonique par les pentes d’un module aux q -différences et le gradué associé

Jacques Sauloy (2004)

Annales de l’institut Fourier

Nous montrons que le polygone de Newton d’une équation aux q -différences linéaire ne dépend que du module aux q -différences correspondant. Nous interprétons les résultats classiques de factorisation convergente de Adams-Birkhoff-Guenther en termes d’existence d’une filtration canonique par les pentes. De plus, le gradué associé possède d’excellentes propriétés fonctorielles et tensorielles.

La première méthode générale de factorisation des polynômes. Autour d’un mémoire de F.T. Schubert

Maurice Mignotte, Doru Ştefănescu (2001)

Revue d'histoire des mathématiques

Nous présentons deux ouvrages peu connus de N.Bernoulli (1708) et de F.T.Schubert (1794) sur la factorisation des polynômes à coefficients entiers ainsi que les recherches de L.Kronecker et B.A.Hausmann sur le même sujet. La méthode de factorisation de Bernoulli-Schubert utilise le calcul des différences finies et l’interpolation par différences finies. Elle a été redécouverte par Kronecker (1882), qui a utilisé l’interpolation de Lagrange. Les deux procédés permettent de factoriser des polynômes...

Currently displaying 981 – 1000 of 2641