The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 201 – 220 of 588

Showing per page

Jordan *-derivation pairs on standard operator algebras and related results

Dilian Yang (2005)

Colloquium Mathematicae

Motivated by Problem 2 in [2], Jordan *-derivation pairs and n-Jordan *-mappings are studied. From the results on these mappings, an affirmative answer to Problem 2 in [2] is given when E = F in (1) or when 𝓐 is unital. For the general case, we prove that every Jordan *-derivation pair is automatically real-linear. Furthermore, a characterization of a non-normal prime *-ring under some mild assumptions and a representation theorem for quasi-quadratic functionals are provided.

Kurepa's functional equation on semigroups.

Bruce R. Ebanks (1982)

Stochastica

The functional equation to which the title refers is:F(x,y) + F(xy,z) = F(x,yz) + F(y,z),where x, y and z are in a commutative semigroup S and F: S x S --> X with (X,+) a divisible abelian group (Divisibility means that for any y belonging to X and natural number n there exists a (unique) solution x belonging to X to nx = y).

Currently displaying 201 – 220 of 588