Displaying 721 – 740 of 1168

Showing per page

On two-scale convergence and related sequential compactness topics

Anders Holmbom, Jeanette Silfver, Nils Svanstedt, Niklas Wellander (2006)

Applications of Mathematics

A general concept of two-scale convergence is introduced and two-scale compactness theorems are stated and proved for some classes of sequences of bounded functions in L 2 ( Ω ) involving no periodicity assumptions. Further, the relation to the classical notion of compensated compactness and the recent concepts of two-scale compensated compactness and unfolding is discussed and a defect measure for two-scale convergence is introduced.

On Witten multiple zeta-functions associated with semisimple Lie algebras I

Kohji Matsumoto, Hirofumi Tsumura (2006)

Annales de l’institut Fourier

We define Witten multiple zeta-functions associated with semisimple Lie algebras 𝔰𝔩 ( n ) , ( n = 2 , 3 , ... ) of several complex variables, and prove the analytic continuation of them. These can be regarded as several variable generalizations of Witten zeta-functions defined by Zagier. In the case 𝔰𝔩 ( 4 ) , we determine the singularities of this function. Furthermore we prove certain functional relations among this function, the Mordell-Tornheim double zeta-functions and the Riemann zeta-function. Using these relations, we prove...

Ordinary convergence follows from statistical summability (C,1) in the case of slowly decreasing or oscillating sequences

Ferenc Móricz (2004)

Colloquium Mathematicae

Schmidt’s Tauberian theorem says that if a sequence (xk) of real numbers is slowly decreasing and l i m n ( 1 / n ) k = 1 n x k = L , then l i m k x k = L . The notion of slow decrease includes Hardy’s two-sided as well as Landau’s one-sided Tauberian conditions as special cases. We show that ordinary summability (C,1) can be replaced by the weaker assumption of statistical summability (C,1) in Schmidt’s theorem. Two recent theorems of Fridy and Khan are also corollaries of our Theorems 1 and 2. In the Appendix, we present a new proof of Vijayaraghavan’s...

Ordre, convergence et sommabilité de produits de séries de Dirichlet

Jean-Pierre Kahane, Hervé Queffélec (1997)

Annales de l'institut Fourier

L’article donne des réponses optimales ou presque optimales aux questions suivantes, qui remontent à Stieltjes, Landau et Bohr, et concernent des séries de Dirichlet A j = n = 1 a ( j , n ) n - s ( j = 1 , 2 ...

Currently displaying 721 – 740 of 1168