On the strong Cesàro summability of double orthogonal series
Schmidt’s Tauberian theorem says that if a sequence (xk) of real numbers is slowly decreasing and , then . The notion of slow decrease includes Hardy’s two-sided as well as Landau’s one-sided Tauberian conditions as special cases. We show that ordinary summability (C,1) can be replaced by the weaker assumption of statistical summability (C,1) in Schmidt’s theorem. Two recent theorems of Fridy and Khan are also corollaries of our Theorems 1 and 2. In the Appendix, we present a new proof of Vijayaraghavan’s...
We are interested in permutations preserving certain distribution properties of sequences. In particular we consider -uniformly distributed sequences on a compact metric space , 0-1 sequences with densities, and Cesàro summable bounded sequences. It is shown that the maximal subgroups, respectively subsemigroups, of leaving any of the above spaces invariant coincide. A subgroup of these permutation groups, which can be determined explicitly, is the Lévy group . We show that is big in the...
In this paper, denotes a complete, non-trivially valued, non-archimedean field. Sequences and infinite matrices have entries in The main purpose of this paper is to prove some product theorems involving the methods and in such fields
Let U be a trigonometrically well-bounded operator on a Banach space , and denote by the sequence of (C,2) weighted discrete ergodic averages of U, that is, . We show that this sequence of weighted ergodic averages converges in the strong operator topology to an idempotent operator whose range is x ∈ : Ux = x, and whose null space is the closure of (I - U). This result expands the scope of the traditional Ergodic Theorem, and thereby serves as a link between Banach space spectral theory and...