Displaying 1141 – 1160 of 2607

Showing per page

Local approximation properties of certain class of linear positive operators via I-convergence

Mehmet Özarslan, Hüseyin Aktuǧlu (2008)

Open Mathematics

In this study, we obtain a local approximation theorems for a certain family of positive linear operators via I-convergence by using the first and the second modulus of continuities and the elements of Lipschitz class functions. We also give an example to show that the classical Korovkin Theory does not work but the theory works in I-convergence sense.

Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions

Ioannis K. Argyros, Santhosh George (2019)

Commentationes Mathematicae Universitatis Carolinae

A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.

Local/global uniform approximation of real-valued continuous functions

Anthony W. Hager (2011)

Commentationes Mathematicae Universitatis Carolinae

For a Tychonoff space X , C ( X ) is the lattice-ordered group ( l -group) of real-valued continuous functions on X , and C * ( X ) is the sub- l -group of bounded functions. A property that X might have is (AP) whenever G is a divisible sub- l -group of C * ( X ) , containing the constant function 1, and separating points from closed sets in X , then any function in C ( X ) can be approximated uniformly over X by functions which are locally in G . The vector lattice version of the Stone-Weierstrass Theorem is more-or-less equivalent...

Currently displaying 1141 – 1160 of 2607