Displaying 1161 – 1180 of 2607

Showing per page

Low-rank tensor representation of Slater-type and Hydrogen-like orbitals

Martin Mrovec (2017)

Applications of Mathematics

The paper focuses on a low-rank tensor structured representation of Slater-type and Hydrogen-like orbital basis functions that can be used in electronic structure calculations. Standard packages use the Gaussian-type basis functions which allow us to analytically evaluate the necessary integrals. Slater-type and Hydrogen-like orbital functions are physically more appropriate, but they are not analytically integrable. A numerical integration is too expensive when using the standard discretization...

Markov inequality on sets with polynomial parametrization

Mirosław Baran (1994)

Annales Polonici Mathematici

The main result of this paper is the following: if a compact subset E of n is UPC in the direction of a vector v S n - 1 then E has the Markov property in the direction of v. We present a method which permits us to generalize as well as to improve an earlier result of Pawłucki and Pleśniak [PP1].

Markov's property for kth derivative

Mirosław Baran, Beata Milówka, Paweł Ozorka (2012)

Annales Polonici Mathematici

Consider the normed space ( ( N ) , | | · | | ) of all polynomials of N complex variables, where || || a norm is such that the mapping L g : ( ( N ) , | | · | | ) f g f ( ( N ) , | | · | | ) is continuous, with g being a fixed polynomial. It is shown that the Markov type inequality | / z j P | | M ( d e g P ) m | | P | | , j = 1,...,N, P ( N ) , with positive constants M and m is equivalent to the inequality | | N / z . . . z N P | | M ' ( d e g P ) m ' | | P | | , P ( N ) , with some positive constants M’ and m’. A similar equivalence result is obtained for derivatives of a fixed order k ≥ 2, which can be more specifically formulated in the language of normed algebras. In...

Markov's property of the Cantor ternary set

Leokadia Białas, Alexander Volberg (1993)

Studia Mathematica

We prove that the Cantor ternary set E satisfies the classical Markov inequality (see [Ma]): for each polynomial p of degree at most n (n = 0, 1, 2,...) (M) | p ' ( x ) | M n m s u p E | p | for x ∈ E, where M and m are positive constants depending only on E.

Maximally convergent rational approximants of meromorphic functions

Hans-Peter Blatt (2015)

Banach Center Publications

Let f be meromorphic on the compact set E ⊂ C with maximal Green domain of meromorphy E ρ ( f ) , ρ(f) < ∞. We investigate rational approximants r n , m of f on E with numerator degree ≤ n and denominator degree ≤ mₙ. We show that a geometric convergence rate of order ρ ( f ) - n on E implies uniform maximal convergence in m₁-measure inside E ρ ( f ) if mₙ = o(n/log n) as n → ∞. If mₙ = o(n), n → ∞, then maximal convergence in capacity inside E ρ ( f ) can be proved at least for a subsequence Λ ⊂ ℕ. Moreover, an analogue of Walsh’s...

Currently displaying 1161 – 1180 of 2607