On the generalized Morrey spaces.
In one of the earliest monographs that involve the notion of a Schauder basis, Franklin showed that the Gram-Schmidt orthonormalization of a certain Schauder basis for the Banach space of functions continuous on [0,1] is again a Schauder basis for that space. Subsequently, Ciesielski observed that the Gram-Schmidt orthonormalization of any Schauder system is a Schauder basis not only for C[0,1], but also for each of the spaces , 1 ≤ p < ∞. Although perhaps not probable, the latter result would...
Let be real matrices such that for each is invertible and is invertible for . In this paper we study integral operators of the form
We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of square integrable harmonic functions.
Recently, Tripathy - Jour. Ind. Math. Soc., 32 (1960), 141-154 - has proved some results on absolute Hausdorff summability of some series associated with Fourier series and its allied series, which generalise the results proved by Mohanty on absolute Cesaro summability. Proceeding on the similar lines, the author has generalised the results of Cheng - Duke Math. Jour., 15 (1948), 17-27 - by proving them on absolute Hausdorff summability.
Considering functions f on ℝⁿ for which both f and f̂ are bounded by the Gaussian , 0 < a < 1, we show that their Fourier-Hermite coefficients have exponential decay. Optimal decay is obtained for O(n)-finite functions, thus extending a one-dimensional result of Vemuri.
Boulahia and the present authors introduced the Orlicz norm in the class -a.p. of Besicovitch-Orlicz almost periodic functions and gave several formulas for it; they also characterized the reflexivity of this space [Comment. Math. Univ. Carolin. 43 (2002)]. In the present paper, we consider the problem of k-convexity of -a.p. with respect to the Orlicz norm; we give necessary and sufficient conditions in terms of strict convexity and reflexivity.