On weighted transplantation and multipliers for Laguerre expansions.
We consider one-sided weight classes of Muckenhoupt type and study the weighted weak type (1,1) norm inequalities for a class of one-sided oscillatory singular integrals with smooth kernel.
Mathematics Subject Classification 2010: 42C40, 44A12.In 1986 Y. Nievergelt suggested a simple formula which allows to reconstruct a continuous compactly supported function on the 2-plane from its Radon transform. This formula falls into the scope of the classical convolution-backprojection method. We show that elementary tools of fractional calculus can be used to obtain more general inversion formulas for the k-plane Radon transform of continuous and L^p functions on R^n for all 1 ≤ k < n....
A new approach to the study of zeros of orthogonal polynomials with respect to an Hermitian and regular linear functional is presented. Some results concerning zeros of kernels are given.
Nous établissons des résultats d’interpolation non-standards entre les espaces de Besov et les espaces et , avec des applications aux lemmes de régularité en moyenne et aux inégalités de type Gagliardo-Nirenberg. La preuve de ces résultats utilise les décompositions dans des bases d’ondelettes.
We study, for a basis of Hölderian compactly supported wavelets, the boundedness and convergence of the associated projectors on the space for some p in ]1,∞[ and some nonnegative Borel measure μ on ℝ. We show that the convergence properties are related to the criterion of Muckenhoupt.
We show that to any multi-resolution analysis of L2(R) with multiplicity d, dilation factor A (where A is an integer ≥ 2) and with compactly supported scaling functions we may associate compactly supported wavelets. Conversely, if (Ψε,j,k = Aj/2 Ψε (Ajx - k)), 1 ≤ ε ≤ E and j, k ∈ Z, is a Hilbertian basis of L2(R) with continuous compactly supported mother functions Ψε, then it is provided by a multi-resolution analysis with dilation factor A, multiplicity d = E / (A - 1) and with compactly supported...
Let f be a measurable function defined on ℝ. For each n ∈ ℤ we consider the average . The square function is defined as . The local version of this operator, namely the operator , is of interest in ergodic theory and it has been extensively studied. In particular it has been proved [3] that it is of weak type (1,1), maps into itself (p > 1) and into BMO. We prove that the operator S not only maps into BMO but it also maps BMO into BMO. We also prove that the boundedness still holds...
We investigate weak type estimates for maximal functions, fractional and singular integrals in grand Lebesgue spaces. In particular, we show that for the one-weight weak type inequality it is necessary and sufficient that a weight function belongs to the appropriate Muckenhoupt class. The same problem is discussed for strong maximal functions, potentials and singular integrals with product kernels.