Operador de Hardy-Littlewood reiterado y clases de Orlicz de funciones maximales.
Let S be a degree preserving linear operator of ℝ[X] into itself. The question is if, preserving orthogonality of some orthogonal polynomial sequences, S must necessarily be an operator of composition with some affine function of ℝ. In [2] this problem was considered for S mapping sequences of Laguerre polynomials onto sequences of orthogonal polynomials. Here we improve substantially the theorems of [2] as well as disprove the conjecture proposed there. We also consider the same questions for polynomials...
Fefferman-Stein, Wainger and Sjölin proved optimal boundedness for certain oscillating multipliers on . In this article, we prove an analogue of their result on a compact Lie group.
Let be the n-dimensional fractional Hardy operator, where 0 < α ≤ n. It is well-known that is bounded from to with when n(1-1/p) < α ≤ n. We improve this result within the framework of Banach function spaces, for instance, weighted Lebesgue spaces and Lorentz spaces. We in fact find a ’source’ space , which is strictly larger than X, and a ’target’ space , which is strictly smaller than Y, under the assumption that is bounded from X into Y and the Hardy-Littlewood maximal operator...
Recently it was proved for 1 < p < ∞ that , a modulus of smoothness on the unit sphere, and , a K-functional involving the Laplace-Beltrami operator, are equivalent. It will be shown that the range 1 < p < ∞ is optimal; that is, the equivalence does not hold either for p = ∞ or for p = 1.