Approximation of signals (functions) belonging to the weighted -class by linear operators.
A new orthonormality condition for scaling functions is derived. This condition shows a close connection between orthonormality and relations among discrete scaling moments. This new condition in connection with certain approximation properties of scaling functions enables to prove new relations among discrete scaling moments and consequently the same relations for continuous scaling moments.
Let be an elliptic system of higher order homogeneous partial differential operators. We establish in this article the equivalence in norm between the maximal function and the square function of solutions to in Lipschitz domains. Several applications of this result are discussed.
We develop an elementary theory of Fourier and Laplace transformations for exponentially decreasing hyperfunctions. Since any hyperfunction can be extended to an exponentially decreasing hyperfunction, this provides simple notions of asymptotic Fourier and Laplace transformations for hyperfunctions, improving the existing models. This is used to prove criteria for the uniqueness and solvability of the abstract Cauchy problem in Fréchet spaces.