Displaying 421 – 440 of 459

Showing per page

Approximation properties of wavelets and relations among scaling moments II

Václav Finěk (2004)

Open Mathematics

A new orthonormality condition for scaling functions is derived. This condition shows a close connection between orthonormality and relations among discrete scaling moments. This new condition in connection with certain approximation properties of scaling functions enables to prove new relations among discrete scaling moments and consequently the same relations for continuous scaling moments.

Area integral estimates for higher order elliptic equations and systems

Björn E. J. Dahlberg, Carlos E. Kenig, Jill Pipher, G. C. Verchota (1997)

Annales de l'institut Fourier

Let L be an elliptic system of higher order homogeneous partial differential operators. We establish in this article the equivalence in L p norm between the maximal function and the square function of solutions to L in Lipschitz domains. Several applications of this result are discussed.

Asymptotic Fourier and Laplace transformations for hyperfunctions

Michael Langenbruch (2011)

Studia Mathematica

We develop an elementary theory of Fourier and Laplace transformations for exponentially decreasing hyperfunctions. Since any hyperfunction can be extended to an exponentially decreasing hyperfunction, this provides simple notions of asymptotic Fourier and Laplace transformations for hyperfunctions, improving the existing models. This is used to prove criteria for the uniqueness and solvability of the abstract Cauchy problem in Fréchet spaces.

Currently displaying 421 – 440 of 459