Displaying 501 – 520 of 3651

Showing per page

Best constants and asymptotics of Marcinkiewicz-Zygmund inequalities

Andreas Defant, Marius Junge (1997)

Studia Mathematica

We determine the set of all triples 1 ≤ p,q,r ≤ ∞ for which the so-called Marcinkiewicz-Zygmund inequality is satisfied: There exists a constant c≥ 0 such that for each bounded linear operator T : L q ( μ ) L p ( ν ) , each n ∈ ℕ and functions f 1 , . . . , f n L q ( μ ) , ( ʃ ( k = 1 n | T f k | r ) p / r d ν ) 1 / p c T ( ʃ ( k = 1 n | f k | r ) q / r d μ ) 1 / q . This type of inequality includes as special cases well-known inequalities of Paley, Marcinkiewicz, Zygmund, Grothendieck, and Kwapień. If such a Marcinkiewicz-Zygmund inequality holds for a given triple (p,q,r), then we calculate the best constant c ≥ 0 (with the only exception:...

Best constants for some operators associated with the Fourier and Hilbert transforms

B. Hollenbeck, N. J. Kalton, I. E. Verbitsky (2003)

Studia Mathematica

We determine the norm in L p ( ) , 1 < p < ∞, of the operator I - s c , where c and s are respectively the cosine and sine Fourier transforms on the positive real axis, and I is the identity operator. This solves a problem posed in 1984 by M. S. Birman [Bir] which originated in scattering theory for unbounded obstacles in the plane. We also obtain the L p -norms of the operators aI + bH, where H is the Hilbert transform (conjugate function operator) on the circle or real line, for arbitrary real a,b. Best...

Best possible sufficient conditions for the Fourier transform to satisfy the Lipschitz or Zygmund condition

Ferenc Móricz (2010)

Studia Mathematica

We consider complex-valued functions f ∈ L¹(ℝ), and prove sufficient conditions in terms of f to ensure that the Fourier transform f̂ belongs to one of the Lipschitz classes Lip(α) and lip(α) for some 0 < α ≤ 1, or to one of the Zygmund classes zyg(α) and zyg(α) for some 0 < α ≤ 2. These sufficient conditions are best possible in the sense that they are also necessary in the case of real-valued functions f for which either xf(x) ≥ 0 or f(x) ≥ 0 almost everywhere.

Beurling algebra analogues of theorems of Wiener-Lévy-Żelazko and Żelazko

S. J. Bhatt, P. A. Dabhi, H. V. Dedania (2009)

Studia Mathematica

Let 0 < p ≤ 1, let ω: ℤ → [1,∞) be a weight on ℤ and let f be a nowhere vanishing continuous function on the unit circle Γ whose Fourier series satisfies n | f ̂ ( n ) | p ω ( n ) < . Then there exists a weight ν on ℤ such that n | ( 1 / f ) ^ ( n ) | p ν ( n ) < . Further, ν is non-constant if and only if ω is non-constant; and ν = ω if ω is non-quasianalytic. This includes the classical Wiener theorem (p = 1, ω = 1), Domar theorem (p = 1, ω is non-quasianalytic), Żelazko theorem (ω = 1) and a recent result of Bhatt and Dedania (p = 1). An analogue of...

Bilinear fractional Hardy-type operators with rough kernels on central Morrey spaces with variable exponents

Hongbin Wang, Chenchen Niu (2024)

Czechoslovak Mathematical Journal

We introduce a type of n -dimensional bilinear fractional Hardy-type operators with rough kernels and prove the boundedness of these operators and their commutators on central Morrey spaces with variable exponents. Furthermore, the similar definitions and results of multilinear fractional Hardy-type operators with rough kernels are obtained.

Bilinear multipliers on Lorentz spaces

Francisco Villarroya (2008)

Czechoslovak Mathematical Journal

We give one sufficient and two necessary conditions for boundedness between Lebesgue or Lorentz spaces of several classes of bilinear multiplier operators closely connected with the bilinear Hilbert transform.

Bilinear operators associated with Schrödinger operators

Chin-Cheng Lin, Ying-Chieh Lin, Heping Liu, Yu Liu (2011)

Studia Mathematica

Let L = -Δ + V be a Schrödinger operator in d and H ¹ L ( d ) be the Hardy type space associated to L. We investigate the bilinear operators T⁺ and T¯ defined by T ± ( f , g ) ( x ) = ( T f ) ( x ) ( T g ) ( x ) ± ( T f ) ( x ) ( T g ) ( x ) , where T₁ and T₂ are Calderón-Zygmund operators related to L. Under some general conditions, we prove that either T⁺ or T¯ is bounded from L p ( d ) × L q ( d ) to H ¹ L ( d ) for 1 < p,q < ∞ with 1/p + 1/q = 1. Several examples satisfying these conditions are given. We also give a counterexample for which the classical Hardy space estimate fails.

Biorthogonal wavelets, MRA's and shift-invariant spaces

Marcin Bownik, Gustavo Garrigós (2004)

Studia Mathematica

We give a characterization of biorthogonal wavelets arising from MRA's of multiplicity D entirely in terms of the dimension function. This improves the previous characterization in [8] removing an unnecessary angle condition. Besides we characterize Riesz wavelets arising from MRA's, and present new proofs based on shift-invariant space theory, generalizing the 1-dimensional results appearing in [17].

Currently displaying 501 – 520 of 3651