Characterization of a two-weighted vector-valued inequality for fractional maximal operators.
We characterize associate spaces of generalized weighted weak-Lorentz spaces and use this characterization to study embeddings between these spaces.
Let H be a separable Hilbert space, L(H) be the algebra of all bounded linear operators of H and Bess(H) be the set of all Bessel sequences of H. Fixed an orthonormal basis E = {ek}k∈N of H, a bijection αE: Bess(H) → L(H) can be defined. The aim of this paper is to characterize α-1E (A) for different classes of operators A ⊆ L(H). In particular, we characterize the Bessel sequences associated to injective operators, compact operators and Schatten p-classes.
We characterize the low pass filters associated with scaling functions of a multiresolution analysis in a general context, where instead of the dyadic dilation one considers the dilation given by a fixed linear invertible map A: ℝⁿ → ℝⁿ such that A(ℤⁿ) ⊂ ℤⁿ and all (complex) eigenvalues of A have modulus greater than 1. This characterization involves the notion of filter multiplier of such a multiresolution analysis. Moreover, the paper contains a characterization of the measurable functions which...
Extending previous work by Meise and Vogt, we characterize those convolution operators, defined on the space of (ω)-quasianalytic functions of Beurling type of one variable, which admit a continuous linear right inverse. Also, we characterize those (ω)-ultradifferential operators which admit a continuous linear right inverse on for each compact interval [a,b] and we show that this property is in fact weaker than the existence of a continuous linear right inverse on .
We introduce the new class of Besicovitch-Musielak-Orlicz almost periodic functions and consider its strict convexity with respect to the Luxemburg norm.
We give characterizations of orthogonal families, tight frames and orthonormal bases of Gabor systems. The conditions we propose are stated in terms of equations for the Fourier transforms of the Gabor system's generating functions.