Displaying 621 – 640 of 3651

Showing per page

Character sums in complex half-planes

Sergei V. Konyagin, Vsevolod F. Lev (2004)

Journal de Théorie des Nombres de Bordeaux

Let A be a finite subset of an abelian group G and let P be a closed half-plane of the complex plane, containing zero. We show that (unless A possesses a special, explicitly indicated structure) there exists a non-trivial Fourier coefficient of the indicator function of A which belongs to P . In other words, there exists a non-trivial character χ G ^ such that a A χ ( a ) P .

Characterization of Bessel sequences.

M. Laura Arias, Gustavo Corach, Miriam Pacheco (2007)

Extracta Mathematicae

Let H be a separable Hilbert space, L(H) be the algebra of all bounded linear operators of H and Bess(H) be the set of all Bessel sequences of H. Fixed an orthonormal basis E = {ek}k∈N of H, a bijection αE: Bess(H) → L(H) can be defined. The aim of this paper is to characterize α-1E (A) for different classes of operators A ⊆ L(H). In particular, we characterize the Bessel sequences associated to injective operators, compact operators and Schatten p-classes.

Characterization of low pass filters in a multiresolution analysis

A. San Antolín (2009)

Studia Mathematica

We characterize the low pass filters associated with scaling functions of a multiresolution analysis in a general context, where instead of the dyadic dilation one considers the dilation given by a fixed linear invertible map A: ℝⁿ → ℝⁿ such that A(ℤⁿ) ⊂ ℤⁿ and all (complex) eigenvalues of A have modulus greater than 1. This characterization involves the notion of filter multiplier of such a multiresolution analysis. Moreover, the paper contains a characterization of the measurable functions which...

Characterization of the convolution operators on quasianalytic classes of Beurling type that admit a continuous linear right inverse

José Bonet, Reinhold Meise (2008)

Studia Mathematica

Extending previous work by Meise and Vogt, we characterize those convolution operators, defined on the space ( ω ) ( ) of (ω)-quasianalytic functions of Beurling type of one variable, which admit a continuous linear right inverse. Also, we characterize those (ω)-ultradifferential operators which admit a continuous linear right inverse on ( ω ) [ a , b ] for each compact interval [a,b] and we show that this property is in fact weaker than the existence of a continuous linear right inverse on ( ω ) ( ) .

Currently displaying 621 – 640 of 3651