Displaying 761 – 780 of 3638

Showing per page

Convergence of series of dilated functions and spectral norms of GCD matrices

Christoph Aistleitner, István Berkes, Kristian Seip, Michel Weber (2015)

Acta Arithmetica

We establish a connection between the L² norm of sums of dilated functions whose jth Fourier coefficients are ( j - α ) for some α ∈ (1/2,1), and the spectral norms of certain greatest common divisor (GCD) matrices. Utilizing recent bounds for these spectral norms, we obtain sharp conditions for the convergence in L² and for the almost everywhere convergence of series of dilated functions.

Convergence of singular integrals with general measures

Pertti Mattila, Joan Verdera (2009)

Journal of the European Mathematical Society

We show that L 2 -bounded singular integrals in metric spaces with respect to general measures and kernels converge weakly. This implies a kind of average convergence almost everywhere. For measures with zero density we prove the almost everywhere existence of principal values.

Convolution algebras with weighted rearrangement-invariant norm

R. Kerman, E. Sawyer (1994)

Studia Mathematica

Let X be a rearrangement-invariant space of Lebesgue-measurable functions on n , such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on n , define X ( w ) = F : n : > F X ( w ) : = F w X . We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at x n by ( F G ) ( x ) = ʃ n F ( x - y ) G ( y ) d y ; more precisely, when F G X ( w ) F X ( w ) G X ( w ) for all F,G ∈ X(w).

Convolution of radius functions on ℝ³

Konstanty Holly (1994)

Annales Polonici Mathematici

We reduce the convolution of radius functions to that of 1-variable functions. Then we present formulas for computing convolutions of an abstract radius function on ℝ³ with various integral kernels - given by elementary or discontinuous functions. We also prove a theorem on the asymptotic behaviour of a convolution at infinity. Lastly, we deduce some estimates which enable us to find the asymptotics of the velocity and pressure of a fluid (described by the Navier-Stokes equations) in the boundary...

Convolution operators on Hardy spaces

Chin-Cheng Lin (1996)

Studia Mathematica

We give sufficient conditions on the kernel K for the convolution operator Tf = K ∗ f to be bounded on Hardy spaces H p ( G ) , where G is a homogeneous group.

Convolution operators with anisotropically homogeneous measures on 2 n with n-dimensional support

E. Ferreyra, T. Godoy, M. Urciuolo (2002)

Colloquium Mathematicae

Let α i , β i > 0 , 1 ≤ i ≤ n, and for t > 0 and x = (x₁,...,xₙ) ∈ ℝⁿ, let t x = ( t α x , . . . , t α x ) , t x = ( t β x , . . . , t β x ) and | | x | | = i = 1 n | x i | 1 / α i . Let φ₁,...,φₙ be real functions in C ( - 0 ) such that φ = (φ₁,..., φₙ) satisfies φ(t • x) = t ∘ φ(x). Let γ > 0 and let μ be the Borel measure on 2 n given by μ ( E ) = χ E ( x , φ ( x ) ) | | x | | γ - α d x , where α = i = 1 n α i and dx denotes the Lebesgue measure on ℝⁿ. Let T μ f = μ f and let | | T μ | | p , q be the operator norm of T μ from L p ( 2 n ) into L q ( 2 n ) , where the L p spaces are taken with respect to the Lebesgue measure. The type set E μ is defined by E μ = ( 1 / p , 1 / q ) : | | T μ | | p , q < , 1 p , q . In the case α i β k for 1 ≤ i,k ≤ n we characterize the type set under...

Convolutions related to q-deformed commutativity

Anna Kula (2010)

Banach Center Publications

Two important examples of q-deformed commutativity relations are: aa* - qa*a = 1, studied in particular by M. Bożejko and R. Speicher, and ab = qba, studied by T. H. Koornwinder and S. Majid. The second case includes the q-normality of operators, defined by S. Ôta (aa* = qa*a). These two frameworks give rise to different convolutions. In particular, in the second scheme, G. Carnovale and T. H. Koornwinder studied their q-convolution. In the present paper we consider another convolution of measures...

Coorbit space theory for quasi-Banach spaces

Holger Rauhut (2007)

Studia Mathematica

We generalize the classical coorbit space theory developed by Feichtinger and Gröchenig to quasi-Banach spaces. As a main result we provide atomic decompositions for coorbit spaces defined with respect to quasi-Banach spaces. These atomic decompositions are used to prove fast convergence rates of best n-term approximation schemes. We apply the abstract theory to time-frequency analysis of modulation spaces M m p , q , 0 < p,q ≤ ∞.

Currently displaying 761 – 780 of 3638