Interolation, Correlation Identities, and Inequalities for Infinitely Divisible Variables.
Let S be a sequence of points in the unit ball of ℂⁿ which is separated for the hyperbolic distance and contained in the zero set of a Nevanlinna function. We prove that the associated measure is bounded, by use of the Wirtinger inequality. Conversely, if X is an analytic subset of such that any δ -separated sequence S has its associated measure bounded by C/δⁿ, then X is the zero set of a function in the Nevanlinna class of . As an easy consequence, we prove that if S is a dual bounded sequence...
In questa nota, si studiano problemi di interpolazione per varietà discrete in spazi di funzioni olomorfe in coni. In particolare si mostra come sia possibile estendere il Principio Fondamentale di Ehrenpreis ad equazioni di convoluzione nella spazio , introdotto in [4] in connessione con problemi di fisica quantistica.
Si estendono qui i risultati della nota precedente al caso di varietà non discrete. Ciò viene utilizzato per ottenere un teorema di rappresentazione per soluzioni di sistemi di equazioni di convoluzione in spazi di funzioni olomorfe in coni.
We give characterizations of Besov and Triebel-Lizorkin spaces and in smooth domains via convolutions with compactly supported smooth kernels satisfying some moment conditions. The results for s ∈ ℝ, 0 < p,q ≤ ∞ are stated in terms of the mixed norm of a certain maximal function of a distribution. For s ∈ ℝ, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ characterizations without use of maximal functions are also obtained.
In this paper a very general method is given in order to reconstruct a periodic function knowing only an approximation of its Fourier coefficients.
Mathematics Subject Classification: 42A38, 42C40, 33D15, 33D60This paper aims to study the q-wavelets and the continuous q-wavelet transforms, associated with the q-Bessel operator for a fixed q ∈]0, 1[. Using the q-Riemann-Liouville and the q-Weyl transforms, we give some relations between the continuous q-wavelet transform, studied in [3], and the continuous q-wavelet transform associated with the q-Bessel operator, and we deduce formulas which give the inverse operators of the q-Riemann-Liouville and...
If is a strictly increasing sequence of integers, a continuous probability measure σ on the unit circle is said to be IP-Dirichlet with respect to if as F runs over all non-empty finite subsets F of ℕ and the minimum of F tends to infinity. IP-Dirichlet measures and their connections with IP-rigid dynamical systems have recently been investigated by Aaronson, Hosseini and Lemańczyk. We simplify and generalize some of their results, using an approach involving generalized Riesz products.