Is the maximal function of a Lipschitz function continuous?
Let be a Schrödinger operator on with and satisfying . Assume that is a function such that is an Orlicz function, (the class of uniformly Muckenhoupt weights). Let be an -harmonic function on with , where and are positive constants. In this article, the author proves that the mapping is an isomorphism from the Musielak-Orlicz-Hardy space associated with , , to the Musielak-Orlicz-Hardy space under some assumptions on . As applications, the author further obtains the...