The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 81 – 100 of 160

Showing per page

Weighted inequalities and vector-valued Calderón-Zygmund operators on non-homogeneous spaces.

José García Cuerva, José María Martell (2000)

Publicacions Matemàtiques

Recently, F. Nazarov, S. Treil and A. Volberg (and independently X. Tolsa) have extended the classical theory of Calderón-Zygmund operators to the context of a non-homogeneous space (X,d,μ) where, in particular, the measure μ may be non-doubling. In the present work we study weighted inequalities for these operators. Specifically, for 1 < p < ∞, we identify sufficient conditions for the weight on one side, which guarantee the existence of another weight in the other side, so that the...

Weighted inequalities for commutators of one-sided singular integrals

María Lorente, María Silvina Riveros (2002)

Commentationes Mathematicae Universitatis Carolinae

We prove weighted inequalities for commutators of one-sided singular integrals (given by a Calder’on-Zygmund kernel with support in ( - , 0 ) ) with BMO functions. We give the one-sided version of the results in C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., vol. 3 (6), 1997, pages 743–756 and C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., vol 128 (1), 1995, pages...

Weighted inequalities for one-sided maximal functions in Orlicz spaces

Pedro Ortega Salvador (1998)

Studia Mathematica

Let M g + be the maximal operator defined by M g + ( x ) = s u p h > 0 ( ʃ x x + h | | g ) / ( ʃ x x + h g ) , where g is a positive locally integrable function on ℝ. Let Φ be an N-function such that both Φ and its complementary N-function satisfy Δ 2 . We characterize the pairs of positive functions (u,ω) such that the weak type inequality u ( x | M g + ( x ) > λ ) C / ( Φ ( λ ) ) ʃ Φ ( | | ) ω holds for every ⨍ in the Orlicz space L Φ ( ω ) . We also characterize the positive functions ω such that the integral inequality ʃ Φ ( | M g + | ) ω ʃ Φ ( | | ) ω holds for every L Φ ( ω ) . Our results include some already obtained for functions in L p and yield as consequences...

Weighted inequalities for rough square functions through extrapolation

Javier Duoandikoetxea, Edurne Seijo (2002)

Studia Mathematica

Weighted inequalities for some square functions are studied. L² results are proved first using the particular structure of the operator and then extrapolation of weights is applied to extend the results to other L p spaces. In particular, previous results for square functions with rough kernel are obtained in a simpler way and extended to a larger class of weights.

Weighted inequalities for square and maximal functions in the plane

Javier Duoandikoetxea, Adela Moyua (1992)

Studia Mathematica

We prove weighted inequalities for square functions of Littlewood-Paley type defined from a decomposition of the plane into sectors of lacunary aperture and for the maximal function over a lacunary set of directions. Some applications to multiplier theorems are also given.

Weighted inequalities through factorization.

Eugenio Hernández (1991)

Publicacions Matemàtiques

In [4] P. Jones solved the question posed by B. Muckenhoupt in [7] concerning the factorization of Ap weights. We recall that a non-negative measurable function w on Rn is in the class Ap, 1 < p < ∞ if and only if the Hardy-Littlewood maximal operator is bounded on Lp(Rn, w). In what follows, Lp(X, w) denotes the class of all measurable functions f defined on X for which ||fw1/p||Lp(X) < ∞, where X is a measure space and w is a non-negative measurable function on X.It has recently...

Weighted integrability and L¹-convergence of multiple trigonometric series

Chang-Pao Chen (1994)

Studia Mathematica

We prove that if c j k 0 as max(|j|,|k|) → ∞, and | j | = 0 ± | k | = 0 ± θ ( | j | ) ϑ ( | k | ) | Δ 12 c j k | < , then f(x,y)ϕ(x)ψ(y) ∈ L¹(T²) and T ² | s m n ( x , y ) - f ( x , y ) | · | ϕ ( x ) ψ ( y ) | d x d y 0 as min(m,n) → ∞, where f(x,y) is the limiting function of the rectangular partial sums s m n ( x , y ) , (ϕ,θ) and (ψ,ϑ) are pairs of type I. A generalization of this result concerning L¹-convergence is also established. Extensions of these results to double series of orthogonal functions are also considered. These results can be extended to n-dimensional case. The aforementioned results generalize work of Balashov [1], Boas [2],...

Weighted integrability of double cosine series with nonnegative coefficients

Chang-Pao Chen, Ming-Chuan Chen (2003)

Studia Mathematica

Let f c ( x , y ) j = 1 k = 1 a j k ( 1 - c o s j x ) ( 1 - c o s k y ) with a j k 0 for all j,k ≥ 1. We estimate the integral 0 π 0 π x α - 1 y β - 1 ϕ ( f c ( x , y ) ) d x d y in terms of the coefficients a j k , where α, β ∈ ℝ and ϕ: [0,∞] → [0,∞]. Our results can be regarded as the trigonometric analogues of those of Mazhar and Móricz [MM]. They generalize and extend Boas [B, Theorem 6.7].

Currently displaying 81 – 100 of 160