Global estimates for singular integrals of the composition of the maximal operator and the Green's operator.
Global maximal estimates are considered for solutions to an initial value problem for the Schrödinger equation.
We prove the global in time existence of a small solution for the 3D micropolar fluid system in critical Fourier-Herz spaces by using the Fourier localization method and Littlewood-Paley theory.
We introduce a new stopping-time argument, adapted to handle linear sums of noncompactly-supported functions that satisfy fairly weak decay, smoothness, and cancellation conditions. We use the argument to obtain a new Littlewood-Paley-type result for such sums.
We prove the global well-posedness of the 2-D Boussinesq system with temperature dependent thermal diffusivity and zero viscosity coefficient.
For a wavelet ψ of compact support, we define a square function and a maximal function NΛ. We then obtain the equivalence of these functions for 0 < p < ∞. We show this equivalence by using good-λ inequalities.
On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space is equal to , and therefore that its dual is BMO. We also prove the atomic decomposition for for p ≤ 1 close enough to 1.
Let A = -Δ + V be a Schrödinger operator on , d ≥ 3, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2. We say that f is an element of if the maximal function belongs to , where is the semigroup generated by -A. It is proved that for d/(d+1) < p ≤ 1 the space admits a special atomic decomposition.
In a previous paper the authors developed an H¹-BMO theory for unbounded metric measure spaces (M,ρ,μ) of infinite measure that are locally doubling and satisfy two geometric properties, called “approximate midpoint” property and “isoperimetric” property. In this paper we develop a similar theory for spaces of finite measure. We prove that all the results that hold in the infinite measure case have their counterparts in the finite measure case. Finally, we show that the theory applies to a class...