Displaying 1181 – 1200 of 3638

Showing per page

Global orthogonality implies local almost-orthogonality.

J. Michael Wilson (2000)

Revista Matemática Iberoamericana

We introduce a new stopping-time argument, adapted to handle linear sums of noncompactly-supported functions that satisfy fairly weak decay, smoothness, and cancellation conditions. We use the argument to obtain a new Littlewood-Paley-type result for such sums.

Good-λ inequalities for wavelets of compact support

Sarah V. Cook (2004)

Colloquium Mathematicae

For a wavelet ψ of compact support, we define a square function S w and a maximal function NΛ. We then obtain the L p equivalence of these functions for 0 < p < ∞. We show this equivalence by using good-λ inequalities.

H 1 -BMO duality on graphs

Emmanuel Russ (2000)

Colloquium Mathematicae

On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space H m a x 1 is equal to H a t 1 , and therefore that its dual is BMO. We also prove the atomic decomposition for H m a x p for p ≤ 1 close enough to 1.

H p spaces associated with Schrödinger operators with potentials from reverse Hölder classes

Jacek Dziubański, Jacek Zienkiewicz (2003)

Colloquium Mathematicae

Let A = -Δ + V be a Schrödinger operator on d , d ≥ 3, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2. We say that f is an element of H A p if the maximal function s u p t > 0 | T t f ( x ) | belongs to L p ( d ) , where T t t > 0 is the semigroup generated by -A. It is proved that for d/(d+1) < p ≤ 1 the space H A p admits a special atomic decomposition.

H¹ and BMO for certain locally doubling metric measure spaces of finite measure

Andrea Carbonaro, Giancarlo Mauceri, Stefano Meda (2010)

Colloquium Mathematicae

In a previous paper the authors developed an H¹-BMO theory for unbounded metric measure spaces (M,ρ,μ) of infinite measure that are locally doubling and satisfy two geometric properties, called “approximate midpoint” property and “isoperimetric” property. In this paper we develop a similar theory for spaces of finite measure. We prove that all the results that hold in the infinite measure case have their counterparts in the finite measure case. Finally, we show that the theory applies to a class...

Currently displaying 1181 – 1200 of 3638