The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1181 –
1200 of
3651
We provide a new and elementary proof for the structure of geodesics in the Heisenberg group Hn. The proof is based on a new isoperimetric inequality for closed curves in R2n.We also prove that the Carnot- Carathéodory metric is real analytic away from the center of the group.
In this paper we continue the study of the Fourier transform on , , analyzing the “almost-orthogonality” of the different directions of the space with respect to the Fourier transform. We prove two theorems: the first is related to an angular Littlewood-Paley square function, and we obtain estimates in terms of powers of , where is the number of equal angles considered in . The second is an extension of the Hardy-Littlewood maximal function when one consider cylinders of , , of fixed eccentricity...
Global maximal estimates are considered for solutions to an initial value problem for the Schrödinger equation.
We prove the global in time existence of a small solution for the 3D micropolar fluid system in critical Fourier-Herz spaces by using the Fourier localization method and Littlewood-Paley theory.
We introduce a new stopping-time argument, adapted to handle linear sums of noncompactly-supported functions that satisfy fairly weak decay, smoothness, and cancellation conditions. We use the argument to obtain a new Littlewood-Paley-type result for such sums.
We prove the global well-posedness of the 2-D Boussinesq system with temperature dependent thermal diffusivity and zero viscosity coefficient.
For a wavelet ψ of compact support, we define a square function and a maximal function NΛ. We then obtain the equivalence of these functions for 0 < p < ∞. We show this equivalence by using good-λ inequalities.
Currently displaying 1181 –
1200 of
3651