Displaying 1241 – 1260 of 3638

Showing per page

Hessian determinants as elements of dual Sobolev spaces

Teresa Radice (2014)

Studia Mathematica

In this short note we present new integral formulas for the Hessian determinant. We use them for new definitions of Hessian under minimal regularity assumptions. The Hessian becomes a continuous linear functional on a Sobolev space.

Hilbert transform, Toeplitz operators and Hankel operators and invariant A∞ weights.

Sergei Treil, Alexander Volberg, Dechao Zheng (1997)

Revista Matemática Iberoamericana

In this paper, several sufficient conditions for boundedness of the Hilbert transform between two weighted Lp-spaces are obtained. Invariant A∞ weights are obtained. Several characterizations of invariant A∞ weights are given. We also obtain some sufficient conditions for products of two Toeplitz operators of Hankel operators to be bounded on the Hardy space of the unit circle using Orlicz spaces and Lorentz spaces.

Homeomorphisms acting on Besov and Triebel-Lizorkin spaces of local regularity ψ(t).

Silvia I. Hartzstein, Beatriz E. Viviani (2005)

Collectanea Mathematica

The aim of this paper is to show that the integral and derivative operators defined by local regularities are homeomorphisms for generalized Besov and Triebel-Lizorkin spaces with local regularities. The underlying geometry is that of homogeneous type spaces and the functions defining local regularities belong to a larger class of growth functions than the potentials tα, related to classical fractional integral and derivative operators and Besov and Triebel-Lizorkin spaces.

How smooth is almost every function in a Sobolev space?

Aurélia Fraysse, Stéphane Jaffard (2006)

Revista Matemática Iberoamericana

We show that almost every function (in the sense of prevalence) in a Sobolev space is multifractal: Its regularity changes from point to point; the sets of points with a given Hölder regularity are fractal sets, and we determine their Hausdorff dimension.

Currently displaying 1241 – 1260 of 3638