Displaying 1661 – 1680 of 3638

Showing per page

Norm convergence of some power series of operators in L p with applications in ergodic theory

Christophe Cuny (2010)

Studia Mathematica

Let X be a closed subspace of L p ( μ ) , where μ is an arbitrary measure and 1 < p < ∞. Let U be an invertible operator on X such that s u p n | | U | | < . Motivated by applications in ergodic theory, we obtain (optimal) conditions for the convergence of series like n 1 ( U f ) / n 1 - α , 0 ≤ α < 1, in terms of | | f + + U n - 1 f | | p , generalizing results for unitary (or normal) operators in L²(μ). The proofs make use of the spectral integration initiated by Berkson and Gillespie and, more particularly, of results from a paper by Berkson-Bourgain-Gillespie....

Norm estimates for Bessel-Riesz operators on generalized Morrey spaces

Mochammad Idris, Hendra Gunawan, A. Eridani (2018)

Mathematica Bohemica

We revisit the properties of Bessel-Riesz operators and present a different proof of the boundedness of these operators on generalized Morrey spaces. We also obtain an estimate for the norm of these operators on generalized Morrey spaces in terms of the norm of their kernels on an associated Morrey space. As a consequence of our results, we reprove the boundedness of fractional integral operators on generalized Morrey spaces, especially of exponent 1 , and obtain a new estimate for their norm.

Norm inequalities for off-centered maximal operators.

Richard L. Wheeden (1993)

Publicacions Matemàtiques

Sufficient conditions are derived in order that there exist strong-type weighted norm inequalities for some off-centered maximal functions. The maximal functions are of Hardy-Littlewood and fractional types taken over starlike sets in Rn. The sufficient conditions are close to necessary and extend some previously known weak-type results.

Norm inequalities for the minimal and maximal operator, and differentiation of the integral.

David Cruz-Uribe, Christoph J. Neugebauer, Victor Olesen (1997)

Publicacions Matemàtiques

We study the weighted norm inequalities for the minimal operator, a new operator analogous to the Hardy-Littlewood maximal operator which arose in the study of reverse Hölder inequalities. We characterize the classes of weights which govern the strong and weak-type norm inequalities for the minimal operator in the two weight case, and show that these classes are the same. We also show that a generalization of the minimal operator can be used to obtain information about the differentiability of the...

Note on duality of weighted multi-parameter Triebel-Lizorkin spaces

Wei Ding, Jiao Chen, Yaoming Niu (2019)

Czechoslovak Mathematical Journal

We study the duality theory of the weighted multi-parameter Triebel-Lizorkin spaces F ˙ p α , q ( ω ; n 1 × n 2 ) . This space has been introduced and the result ( F ˙ p α , q ( ω ; n 1 × n 2 ) ) * = CMO p - α , q ' ( ω ; n 1 × n 2 ) for 0 < p 1 has been proved in Ding, Zhu (2017). In this paper, for 1 < p < , 0 < q < we establish its dual space H ˙ p α , q ( ω ; n 1 × n 2 ) .

Notes on commutator on the variable exponent Lebesgue spaces

Dinghuai Wang (2019)

Czechoslovak Mathematical Journal

We obtain the factorization theorem for Hardy space via the variable exponent Lebesgue spaces. As an application, it is proved that if the commutator of Coifman, Rochberg and Weiss [ b , T ] is bounded on the variable exponent Lebesgue spaces, then b is a bounded mean oscillation (BMO) function.

Notes on interpolation of Hardy spaces

Quanhua Xu (1992)

Annales de l'institut Fourier

Let H p denote the usual Hardy space of analytic functions on the unit disc ( 0 &lt; p ) . We prove that for every function f H 1 there exists a linear operator T defined on L 1 ( T ) which is simultaneously bounded from L 1 ( T ) to H 1 and from L ( T ) to H such that T ( f ) = f . Consequently, we get the following results ( 1 p 0 , p 1 ) :1) ( H p 0 , H p 1 ) is a Calderon-Mitjagin couple;2) for any interpolation functor F , we have F ( H p 0 , H p 1 ) = H ( F ( L p 0 ( T ) , L p 1 ( T ) ) ) , where H ( F ( L p 0 ( T ) , L p 1 ( T ) ) ) denotes the closed subspace of F ( L p 0 ( T ) , L p 1 ( T ) ) of all functions whose Fourier coefficients vanish on negative integers.These results also extend to Hardy...

Currently displaying 1661 – 1680 of 3638