The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 50

Showing per page

A counter-example in singular integral theory

Lawrence B. Difiore, Victor L. Shapiro (2012)

Studia Mathematica

An improvement of a lemma of Calderón and Zygmund involving singular spherical harmonic kernels is obtained and a counter-example is given to show that this result is best possible. In a particular case when the singularity is O(|log r|), let f C ¹ ( N 0 ) and suppose f vanishes outside of a compact subset of N , N ≥ 2. Also, let k(x) be a Calderón-Zygmund kernel of spherical harmonic type. Suppose f(x) = O(|log r|) as r → 0 in the L p -sense. Set F ( x ) = N k ( x - y ) f ( y ) d y x N 0 . Then F(x) = O(log²r) as r → 0 in the L p -sense, 1 < p < ∞....

A Hörmander-type spectral multiplier theorem for operators without heat kernel

Sönke Blunck (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Hörmander’s famous Fourier multiplier theorem ensures the L p -boundedness of F ( - Δ D ) whenever F ( s ) for some s &gt; D 2 , where we denote by ( s ) the set of functions satisfying the Hörmander condition for s derivatives. Spectral multiplier theorems are extensions of this result to more general operators A 0 and yield the L p -boundedness of F ( A ) provided F ( s ) for some s sufficiently large. The harmonic oscillator A = - Δ + x 2 shows that in general s &gt; D 2 is not sufficient even if A has a heat kernel satisfying gaussian estimates. In this paper,...

Currently displaying 1 – 20 of 50

Page 1 Next