The search session has expired. Please query the service again.
               
            
            
                      
                           
        
      
        
	
	
        
    
		
			
			
                                             
                
                    
                    
                
                
    			
    				
                    
    	            
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
The purpose of this paper is to obtain a discrete version for the Hardy spaces  of the weak factorization results obtained for the real Hardy spaces  by Coifman, Rochberg and Weiss for p > n/(n+1), and by Miyachi for p ≤ n/(n+1). It represents an extension, in the one-dimensional case, of the corresponding result by A. Uchiyama who obtained a factorization theorem in the general context of spaces X of homogeneous type, but with some restrictions on the measure that exclude the case of points...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
We extend the well known factorization theorems on the unit disk to product Hardy spaces, which generalizes the previous results obtained by Coifman, Rochberg and Weiss. The basic tools are the boundedness of a certain bilinear form on ℝ²₊ × ℝ²₊ and the characterization of BMO(ℝ²₊ × ℝ²₊) recently obtained by Ferguson, Lacey and Sadosky.
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
The two-dimensional classical Hardy spaces  are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from  to  (1/2 < p ≤ ∞) and is of weak type  where the Hardy space  is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈  ⊃  converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on  whenever 1/2 < p < ∞. Thus, in case f ∈ , the Fejér means...
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    			                    
                                       
Clearly, one of the most basic contributions to the fields of real variables, partial differential equations and Fourier analysis in recent times has been the celebrated theorem of Calderón and Zygmund on the boundedness of singular integrals on Rn [1].
    			                    
    			                 
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    
    		            
    		                
    		                
    		                
    			                
    		                
    		                
    		            
    			    			
    			 
 
    			
    				Currently displaying 1 – 
                                        6 of 
                                        6