The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 3

Displaying 41 – 48 of 48

Showing per page

Normes p -adiques et extensions quadratiques

Christophe Cornut (2009)

Annales de l’institut Fourier

On classifie les orbites de H sur l’immeuble de Bruhat-Tits de G pour trois paires sphériques ( G , H ) de groupes p -adiques classiques.

Note on semigroups generated by positive Rockland operators on graded homogeneous groups

Jacek Dziubański, Waldemar Hebisch, Jacek Zienkiewicz (1994)

Studia Mathematica

Let L be a positive Rockland operator of homogeneous degree d on a graded homogeneous group G and let p t be the convolution kernels of the semigroup generated by L. We prove that if τ(x) is a Riemannian distance of x from the unit element, then there are constants c>0 and C such that | p 1 ( x ) | C e x p ( - c τ ( x ) d / ( d - 1 ) ) . Moreover, if G is not stratified, more precise estimates of p 1 at infinity are given.

Noyau de Cauchy-Szegö d'un espace symétrique de type Cayley

Mohammed Chadli (1998)

Annales de l'institut Fourier

Dans cet article, en utilisant les algèbres de Jordan euclidiennes, nous étudions l’espace de Hardy H 2 ( Ξ ) d’un espace symétrique de type Cayley = G / H . Nous montrons que le noyau de Cauchy-Szegö de H 2 ( Ξ ) s’exprime comme somme d’une série faisant intervenir la fonction c de Harish-Chandra de l’espace symétrique riemannien D = G / K , la fonction c de l’espace symétrique c -dual 𝒩 de et les fonctions sphériques de l’espace symétrique ordonné 𝒩 . Nous établissons, dans le cas où la dimension de l’algèbre de Jordan associée...

Currently displaying 41 – 48 of 48

Previous Page 3