The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 141 – 160 of 315

Showing per page

A weighted Plancherel formula II. The case of the ball

Genkai Zhang (1992)

Studia Mathematica

The group SU(1,d) acts naturally on the Hilbert space L ² ( B d μ α ) ( α > - 1 ) , where B is the unit ball of d and d μ α the weighted measure ( 1 - | z | ² ) α d m ( z ) . It is proved that the irreducible decomposition of the space has finitely many discrete parts and a continuous part. Each discrete part corresponds to a zero of the generalized Harish-Chandra c-function in the lower half plane. The discrete parts are studied via invariant Cauchy-Riemann operators. The representations on the discrete parts are equivalent to actions on some holomorphic...

A Wiener type theorem for (U(p,q),Hₙ)

Linda Saal (2010)

Colloquium Mathematicae

It is well known that (U(p,q),Hₙ) is a generalized Gelfand pair. Applying the associated spectral analysis, we prove a theorem of Wiener Tauberian type for the reduced Heisenberg group, which generalizes a known result for the case p = n, q = 0.

A.e. convergence of anisotropic partial Fourier integrals on Euclidean spaces and Heisenberg groups

D. Müller, E. Prestini (2010)

Colloquium Mathematicae

We define partial spectral integrals S R on the Heisenberg group by means of localizations to isotropic or anisotropic dilates of suitable star-shaped subsets V containing the joint spectrum of the partial sub-Laplacians and the central derivative. Under the assumption that an L²-function f lies in the logarithmic Sobolev space given by l o g ( 2 + L α ) f L ² , where L α is a suitable “generalized” sub-Laplacian associated to the dilation structure, we show that S R f ( x ) converges a.e. to f(x) as R → ∞.

A.e. convergence of spectral sums on Lie groups

Christopher Meaney, Detlef Müller, Elena Prestini (2007)

Annales de l’institut Fourier

Let be a right-invariant sub-Laplacian on a connected Lie group G , and let S R f : = 0 R d E λ f , R 0 , denote the associated “spherical partial sums,” where = 0 λ d E λ is the spectral resolution of . We prove that S R f ( x ) converges a.e. to f ( x ) as R under the assumption log ( 2 + ) f L 2 ( G ) .

Currently displaying 141 – 160 of 315