The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Soient , des espaces de Banach , des espaces d’Orlicz, on définit les applications sommantes de dans . On montre que de telles applications sont radonifiantes de dans .On donne une factorisation caractéristique des applications sommantes.
Let ϰ be a positive, continuous, submultiplicative function on such that for some ω ∈ ℝ, α ∈ and . For every λ ∈ (ω,∞) let for . Let be the space of functions Lebesgue integrable on with weight , and let E be a Banach space. Consider the map . Theorem 5.1 of the present paper characterizes the range of the linear map defined on , generalizing a result established by B. Hennig and F. Neubrander for . If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder’s characterization...
Currently displaying 41 –
43 of
43