The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 3

Displaying 41 – 43 of 43

Showing per page

Applications sommantes et radonifiantes

Patrice Assouad (1972)

Annales de l'institut Fourier

Soient E , F des espaces de Banach L ϕ , L ψ des espaces d’Orlicz, on définit les applications ϕ - ψ sommantes de E dans F . On montre que de telles applications sont ϕ - ψ radonifiantes de E dans σ ( F ' ' , F ' ) .On donne une factorisation caractéristique des applications ϕ - 0 sommantes.

Around Widder’s characterization of the Laplace transform of an element of L ( + )

Jan Kisyński (2000)

Annales Polonici Mathematici

Let ϰ be a positive, continuous, submultiplicative function on + such that l i m t e - ω t t - α ϰ ( t ) = a for some ω ∈ ℝ, α ∈ + ¯ and a + . For every λ ∈ (ω,∞) let ϕ λ ( t ) = e - λ t for t + . Let L ϰ 1 ( + ) be the space of functions Lebesgue integrable on + with weight ϰ , and let E be a Banach space. Consider the map ϕ : ( ω , ) λ ϕ λ L ϰ 1 ( + ) . Theorem 5.1 of the present paper characterizes the range of the linear map T T ϕ defined on L ( L ϰ 1 ( + ) ; E ) , generalizing a result established by B. Hennig and F. Neubrander for ϰ ( t ) = e ω t . If ϰ ≡ 1 and E =ℝ then Theorem 5.1 reduces to D. V. Widder’s characterization...

Currently displaying 41 – 43 of 43

Previous Page 3