The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 401 – 420 of 500

Showing per page

Two separation criteria for second order ordinary or partial differential operators

Richard C. Brown, Don B. Hinton (1999)

Mathematica Bohemica

We generalize a well-known separation condition of Everitt and Giertz to a class of weighted symmetric partial differential operators defined on domains in n . Also, for symmetric second-order ordinary differential operators we show that lim sup t c ( p q ' ) ' / q 2 = θ < 2 where c is a singular point guarantees separation of - ( p y ' ) ' + q y on its minimal domain and extend this criterion to the partial differential setting. As a particular example it is shown that - Δ y + q y is separated on its minimal domain if q is superharmonic. For n = 1 the criterion...

Unique continuation for Schrödinger operators with potential in Morrey spaces.

Alberto Ruiz, Luis Vega (1991)

Publicacions Matemàtiques

Let us consider in a domain Ω of Rn solutions of the differential inequality|Δu(x)| ≤ V(x)|u(x)|, x ∈ Ω,where V is a non smooth, positive potential.We are interested in global unique continuation properties. That means that u must be identically zero on Ω if it vanishes on an open subset of Ω.

Weighted Dispersive Estimates for Solutions of the Schrödinger Equation

Cardoso, Fernando, Cuevas, Claudio, Vodev, Georgi (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 35L15, 35B40, 47F05.Introduction and statement of results. In the present paper we will be interested in studying the decay properties of the Schrödinger group.The authors have been supported by the agreement Brazil-France in Mathematics – Proc. 69.0014/01-5. The first two authors have also been partially supported by the CNPq-Brazil.

Currently displaying 401 – 420 of 500