Variation de la phase de diffusion et distribution des résonances

Vesselin Petkov[1]; Maciej Zworski[2]

  • [1] Département de Mathématiques Appliquées, Université de Bordeaux I, 351, Cours de la Libération, 33405 Talence, FRANCE
  • [2] Mathematics Department, University of California, Evans Hall, Berkeley, CA 94720, USA

Séminaire Équations aux dérivées partielles (1998-1999)

  • Volume: 1998-1999, page 1-12

How to cite

top

Petkov, Vesselin, and Zworski, Maciej. "Variation de la phase de diffusion et distribution des résonances." Séminaire Équations aux dérivées partielles 1998-1999 (1998-1999): 1-12. <http://eudml.org/doc/10962>.

@article{Petkov1998-1999,
affiliation = {Département de Mathématiques Appliquées, Université de Bordeaux I, 351, Cours de la Libération, 33405 Talence, FRANCE; Mathematics Department, University of California, Evans Hall, Berkeley, CA 94720, USA},
author = {Petkov, Vesselin, Zworski, Maciej},
journal = {Séminaire Équations aux dérivées partielles},
keywords = {Laplacian perturbations; Breit-Wigner formulas; scattering poles; spectral asymptotics; Weyl asymptotics},
language = {fre},
pages = {1-12},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Variation de la phase de diffusion et distribution des résonances},
url = {http://eudml.org/doc/10962},
volume = {1998-1999},
year = {1998-1999},
}

TY - JOUR
AU - Petkov, Vesselin
AU - Zworski, Maciej
TI - Variation de la phase de diffusion et distribution des résonances
JO - Séminaire Équations aux dérivées partielles
PY - 1998-1999
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 1998-1999
SP - 1
EP - 12
LA - fre
KW - Laplacian perturbations; Breit-Wigner formulas; scattering poles; spectral asymptotics; Weyl asymptotics
UR - http://eudml.org/doc/10962
ER -

References

top
  1. N. Burq Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math. 180 (1998), 1–29. Zbl0918.35081
  2. T. Christiansen, Spectral asymptotics for general compactly supported perturbations of the Laplacian on n , Comm. P.D.E. 23(1998), 933-947. Zbl0912.35115MR1632784
  3. C.Gérard, A. Martinez and D. Robert, Breit-Wigner formulas for the scattering poles and total scattering cross-section in the semi-classical limit, Comm. Math. Phys. 121 (1989) 323-336. Zbl0704.35114MR985402
  4. L. Guillopé and M. Zworski, Scattering asymptotics for Riemann surfaces, Ann. of Math. 129(1997), 597-660. Zbl0898.58054MR1454705
  5. T.E.Guriev and Yu.S.Safarov, Precise asymptotics of the spectrum for the Laplace operator on manifolds with periodic geodesics, Trudy Matem. Inst. Steklov, 179 (1988) (in Russian) ; English translation in Proc. Steklov Institute of Mathematics, 179 (1989), 35-53. Zbl0701.58058
  6. W.K. Hayman, Subharmonic Functions, vol.II, Academic Press, London, 1989. Zbl0699.31001MR1049148
  7. L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. III, Springer-Verlag, Berlin, 1985. Zbl0601.35001
  8. R.B.Melrose, Polynomial bounds on the number of the scattering poles, J. Funct. Anal.,53 (1983), 287-303. Zbl0535.35067MR724031
  9. R.B.Melrose, Polynomial bounds on the distribution of poles in scattering by an obstacle, Journées EDP, Saint-Jean-de-Monts, 1984. Zbl0621.35073
  10. R.B.Melrose, Weyl asymptotics for the phase in obstacle scattring, Comm. P.D.E., 13 (1988), 1431-1439. Zbl0686.35089MR956828
  11. V. Petkov, Weyl asymptotic of the scattering phase for metric perturbations, Asymptotic Analysis, 10 (1995), 245-261. Zbl0856.35097MR1332383
  12. V. Petkov and G. Vodev, Upper bounds on the number of scattering poles and the Lax-Phillips conjecture, Asymptotic Analysis, 7 (1993), 97-104. Zbl0801.35099MR1225440
  13. V. Petkov and M. Zworski, Breit-Wigner approximation and the distribution of resonances, Comm. Math. Physics, (to appear). Zbl0936.47004MR1704278
  14. G. Popov, On the contribution of degenerate periodic trajectories to the wave trace, Comm. Math. Physics, 196 (1998), 363-383. Zbl0924.58100MR1645007
  15. D. Robert, Asymptotique de la phase de diffusion à haute énergie pour des perturbations du seconde ordre du Laplacien, Ann. Sci. Ecole Norm.Sup. Sér. 25 (1992), 107-134. Zbl0801.35100MR1169349
  16. D. Robert, Relative time-delay for perturbations of elliptic operators and semiclassical asymptotics, J. Funct. Anal. 126 (1994), 36-82. Zbl0813.35073MR1305063
  17. Yu. Safarov, Asymptotics of the spectrum of pseudodifferential operators with periodic characteristics, Zap. Nauchn. sem. Leningrad. Otdel Mat. Inst. Steklov, 152 (1986), 94-104 (in Russian) ; English translation in J. Soviet Math. 40 (1988), 645-652. Zbl0621.35071MR869246
  18. Yu. Safarov and D. Vassiliev, Branching Hamiltonian billiards, Dokl. AN SSSR, 301 (1988), 271-274 ; English tranlsation in Sov. Math. Dokl. 38 (1989), 64-68. Zbl0671.58012MR967818
  19. Yu. Safarov and D. Vassiliev, The asymptotic distribution of eigenvalues of partial differential equations, Translations of mathematical monographs, AMS, vol. 155, 1996. Zbl0870.35003
  20. J. Sjöstrand, A trace formula and review of some estimates for resonances, in Microlocal analysis and spectral theory (Lucca, 1996), 377–437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht, 1997. Zbl0877.35090MR1451399
  21. J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, J. Amer. Math. Soc. 4 (1991), 729-769. Zbl0752.35046MR1115789
  22. J. Sjöstrand and M. Zworski. Lower bounds on the number of scattering poles, Comm. P.D.E., 18 (1993), 847-857. Zbl0784.35070MR1218521
  23. J. Sjöstrand and M. Zworski. Lower bounds on the number of scattering poles, II, J. Funct. Anal. 123 (1994), 336-367. Zbl0823.35137MR1283032
  24. P. Stefanov, Quasimodes and resonances : fine lower bounds, to appear in Duke Math. J. Zbl0952.47013MR1700740
  25. E.C.Titchmarsh, The Theory of Functions, Oxford University, Oxford, 1968. Zbl0005.21004
  26. G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Comm. Math. Phys. 146 (1992), 205-216. Zbl0766.35032MR1163673
  27. G. Vodev, On the distribution of scattering poles for perturbations of the Laplacian, Ann. Inst. Fourier (Grenoble) 42 (1992), 625-635. Zbl0738.35054MR1182642
  28. G. Vodev, Sharp bounds on the number of scattering poles in even-dimensional spaces, Duke Math. J. 74 (1994), 1-17. Zbl0813.35075MR1271461
  29. G. Vodev, Sharp bounds on the number of scattering poles in two dimensional case, Math. Nachr. 170 (1994), 287-297. Zbl0829.35091MR1302380
  30. M. Zworski, Distribution of poles for scattering on the real line,J. Funct. Anal. 73 (1987), 277–296. Zbl0662.34033MR899652
  31. M. Zworski, Sharp polynomial bounds on the number of scattering poles, Duke Math. J. 59 (1989), 311-323. Zbl0705.35099MR1016891
  32. M. Zworski, Poisson formulae for resonaces, Séminaire E.D.P., Ecole Polytechnique, Exposé XIII, 1996-1997. Zbl1255.35084MR1482819
  33. M. Zworski, Poisson formula for resonances in even dimensions. Asian J. Math. 2 (1998), 615-624. Zbl0932.47004MR1724627

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.