An upper bound on the number of negative eigenvalues

Mohammed El Aïdi[1]

  • [1] Departamento de Matemáticas Universidad Nacional de Colombia. Avenida Carrera 30, numéro 45-03. Bogotá, D.C. Colombia.

Annales mathématiques Blaise Pascal (2012)

  • Volume: 19, Issue: 1, page 197-211
  • ISSN: 1259-1734

Abstract

top
This paper is devoted to give an upper bound of the number of negative eigenvalues of the generalized Schrödinger operator, and this upper bound is given in terms of a finite number of minimal dyadic cubes.

How to cite

top

El Aïdi, Mohammed. "Un majorant du nombre des valeurs propres négatives correspondantes à l’opérateur de Schrödinger généralisé.." Annales mathématiques Blaise Pascal 19.1 (2012): 197-211. <http://eudml.org/doc/251098>.

@article{ElAïdi2012,
abstract = {On donne une borne supérieur du nombre des valeurs propres négatives de l’opérateur de Schrödinger généralisé, cette borne est donnée en fonction d’un nombre fini de cube dyadiques minimaux.},
affiliation = {Departamento de Matemáticas Universidad Nacional de Colombia. Avenida Carrera 30, numéro 45-03. Bogotá, D.C. Colombia.},
author = {El Aïdi, Mohammed},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Valeurs propres négatives; Principe de minmax. Cubes dyadiques. Potentiel de Riesz. Résonances; eigenvalues; minmax principle; dyadic cubes; Riesz potential; resonances},
language = {fre},
month = {1},
number = {1},
pages = {197-211},
publisher = {Annales mathématiques Blaise Pascal},
title = {Un majorant du nombre des valeurs propres négatives correspondantes à l’opérateur de Schrödinger généralisé.},
url = {http://eudml.org/doc/251098},
volume = {19},
year = {2012},
}

TY - JOUR
AU - El Aïdi, Mohammed
TI - Un majorant du nombre des valeurs propres négatives correspondantes à l’opérateur de Schrödinger généralisé.
JO - Annales mathématiques Blaise Pascal
DA - 2012/1//
PB - Annales mathématiques Blaise Pascal
VL - 19
IS - 1
SP - 197
EP - 211
AB - On donne une borne supérieur du nombre des valeurs propres négatives de l’opérateur de Schrödinger généralisé, cette borne est donnée en fonction d’un nombre fini de cube dyadiques minimaux.
LA - fre
KW - Valeurs propres négatives; Principe de minmax. Cubes dyadiques. Potentiel de Riesz. Résonances; eigenvalues; minmax principle; dyadic cubes; Riesz potential; resonances
UR - http://eudml.org/doc/251098
ER -

References

top
  1. R.A. Adams, Sobolev space, (1975), Academics Press Zbl0314.46030
  2. J. Avron, Bender-Wu, Formulas for the Zeeman effect in hydrogen, Ann. Phys. Publ. Mat. 131 (1981), 73-94 MR608087
  3. A. Sá Barreto, M. Zworski, Existence of resonances in potential scattering, Commun. Pure Appl. Math. 49 (1996), 1271-1280 Zbl0877.35087MR1414586
  4. Jean-François Bony, Johannes Sjöstrand, Traceformula for resonances in small domains, J. Funct. Anal. 184 (2001), 402-418 Zbl1068.47055MR1851003
  5. J.F. Bony, Minoration du nombre de résonances engendrées par une trajectoire fermée, Commun. Partial Differ. Equations 27 No.5-6 (2002), 1021-1078 Zbl1213.35332MR1916556
  6. N. Burq, Lower bounds for shape resonances widths of long rang Schrödinger operators, Am. J..Math. 124, No.4 (2002), 677-735 Zbl1013.35019MR1914456
  7. J.M. Combes, P. Duclos, M. Klein, R. Seiler, The shape resonance, Comm. Math. Phy. 110 (1987), 215-236 Zbl0629.47044MR887996
  8. B.E.J. Dahlberg, E. Trubowitz, A remark on two dimensional periodic potentials, Comment. Math. Helvetici 57 (1982), 130-134 Zbl0539.35059MR672849
  9. J. Dolbeault, I. Flores, GEOMETRY OF PHASE SPACE AND SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS IN A BALL, Trans. Amer. Math. Soc. 359 (2007), 4073-4087 MR2309176
  10. Yu. V. Egorov, M. El Aïdi, Spectre négatif d’un opérateur elliptique avec des conditions au bord de Robin, Publ. Mat. 45 (2001), 125-148 MR1829580
  11. Y.V. Egorov, V.A. Kondratiev, Estimates of the negative spectrum of an elliptic operator, in Spectral theory of operators, (Novgorod, 1989), Amer.Math.Soc.Transl.Ser.2, Amer.Math. Soc., Providence, RI 150 (1992), 129-206 Zbl0756.35058MR1157650
  12. E. Fabes, C. Kenig, R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. in P.D.E. 7 (1982), 77-116 Zbl0498.35042MR643158
  13. C.L. Fefferman, The Uncertainty Principle, Bull. A.M.S (1983), 129-206 Zbl0526.35080MR707957
  14. I.M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, (1966), Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963. English translation : Daniel Davey and Co., New York Zbl0143.36505MR190800
  15. Z. Guo, J. Wei, Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent, Trans. Amer. Math. Soc. 363 (2011), 4777-4799 Zbl1229.35079MR2806691
  16. E. Harell, B. Simon, The mathematical theory of resonances which have exponentially small widths, Duke Math. J. 47 (1980), 845-902 Zbl0455.35091MR596118
  17. B. Helffer, J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986) Zbl0631.35075MR871788
  18. P. D. Hislop, I. M. Sigal, Shape resonances in quantum mechanics, Differential equations and mathematical physics (Birmingham, Ala., 1986) 1285 (1987), 180-196, Springer, Berlin Zbl0653.46074MR921268
  19. P.D. Hislop, I.M. Sigal, Semiclassical resolvent estimates, Ann. Inst. H.Poincaré Phys. Théor. 51 (1989), 187-198 Zbl0719.35064MR1033616
  20. R. Kerman, T. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators, Ann.Inst.Fourier,Grenoble(36) 4 (1986), 207-228 Zbl0591.47037MR867921
  21. A. Martin, Résonance dans l’approximation de Born Oppenheimer I, Journal of Differ. Eq. (1991), 204-234 Zbl0737.35046MR1111174
  22. A. Martin, Résonance dans l’approximation de Born Oppenheimer II, Commun.Math.Phys. 135 (1991), 517-530 Zbl0737.35047MR1091576
  23. Vladimir Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, 342 (2011), Springer, Heidelberg MR2777530
  24. L. Parnovski, A. Sobolev, On the Beth-Sommerfeld conjecture for the polyharmonic operator, Duke Math. J. 107 Number 2 (2001), 209-238 Zbl1092.35025MR1823047
  25. V. Petkov, M. Zworski, Breit-Wigner approximation and the distribution of resonances, Comm. Math. Phy. 204 (1999), 329-351 Zbl0936.47004MR1704278
  26. V.N. Popov, M. Skriganov, A remark on the spectral structure of the two di- mensional Schrödinger operator with a periodic potential, Zap. Nauchn. Sem. LOMI AN SSSR 109 (1981), 131-133 Zbl0492.47024MR629118
  27. Michael Reed, Barry Simon, Methods of modern mathematical physics. I, (1980), Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York Zbl0459.46001MR751959
  28. M.A. Shubin, Pseudodifferential Operators and Spectral Theory, (2001), Second Edition, Springer-Verlag Zbl0616.47040MR1852334
  29. M. Skriganov, Finiteness of the number of gaps in the spectrum of the mutlidimensional polyharmonic operator with a periodic potential., Mat. Sb (Engl. transl. : Math. USSR Sb. 41 (1982) 113 (1980), 131-145 Zbl0464.35064MR590542
  30. M. M. Skriganov, Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Trudy Mat. Inst. Steklov. 171 (1985) Zbl0567.47004MR798454
  31. O.A. Veliev., Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe-Sommerfeld conjecture, Functional Anal. Appl. 21 (1987), 87-99 Zbl0638.47049MR902289
  32. I. Verbitsky, Nonlinear potentials and trace inequalities, The Maz’ya anniversary collection, Vol2 (Rostock, 1998), 323-343, Oper.Theory Adv.Appl., Birkhäuser, Basel, 110 (1998), 323-343 Zbl0941.31001MR1747901
  33. M. Zworski, Resonances in physics in geometry, Notices Amer. Math. Soc. 46 (1999), 319-328 Zbl1177.58021MR1668841

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.