An upper bound on the number of negative eigenvalues
- [1] Departamento de Matemáticas Universidad Nacional de Colombia. Avenida Carrera 30, numéro 45-03. Bogotá, D.C. Colombia.
Annales mathématiques Blaise Pascal (2012)
- Volume: 19, Issue: 1, page 197-211
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topEl Aïdi, Mohammed. "Un majorant du nombre des valeurs propres négatives correspondantes à l’opérateur de Schrödinger généralisé.." Annales mathématiques Blaise Pascal 19.1 (2012): 197-211. <http://eudml.org/doc/251098>.
@article{ElAïdi2012,
abstract = {On donne une borne supérieur du nombre des valeurs propres négatives de l’opérateur de Schrödinger généralisé, cette borne est donnée en fonction d’un nombre fini de cube dyadiques minimaux.},
affiliation = {Departamento de Matemáticas Universidad Nacional de Colombia. Avenida Carrera 30, numéro 45-03. Bogotá, D.C. Colombia.},
author = {El Aïdi, Mohammed},
journal = {Annales mathématiques Blaise Pascal},
keywords = {Valeurs propres négatives; Principe de minmax. Cubes dyadiques. Potentiel de Riesz. Résonances; eigenvalues; minmax principle; dyadic cubes; Riesz potential; resonances},
language = {fre},
month = {1},
number = {1},
pages = {197-211},
publisher = {Annales mathématiques Blaise Pascal},
title = {Un majorant du nombre des valeurs propres négatives correspondantes à l’opérateur de Schrödinger généralisé.},
url = {http://eudml.org/doc/251098},
volume = {19},
year = {2012},
}
TY - JOUR
AU - El Aïdi, Mohammed
TI - Un majorant du nombre des valeurs propres négatives correspondantes à l’opérateur de Schrödinger généralisé.
JO - Annales mathématiques Blaise Pascal
DA - 2012/1//
PB - Annales mathématiques Blaise Pascal
VL - 19
IS - 1
SP - 197
EP - 211
AB - On donne une borne supérieur du nombre des valeurs propres négatives de l’opérateur de Schrödinger généralisé, cette borne est donnée en fonction d’un nombre fini de cube dyadiques minimaux.
LA - fre
KW - Valeurs propres négatives; Principe de minmax. Cubes dyadiques. Potentiel de Riesz. Résonances; eigenvalues; minmax principle; dyadic cubes; Riesz potential; resonances
UR - http://eudml.org/doc/251098
ER -
References
top- R.A. Adams, Sobolev space, (1975), Academics Press Zbl0314.46030
- J. Avron, Bender-Wu, Formulas for the Zeeman effect in hydrogen, Ann. Phys. Publ. Mat. 131 (1981), 73-94 MR608087
- A. Sá Barreto, M. Zworski, Existence of resonances in potential scattering, Commun. Pure Appl. Math. 49 (1996), 1271-1280 Zbl0877.35087MR1414586
- Jean-François Bony, Johannes Sjöstrand, Traceformula for resonances in small domains, J. Funct. Anal. 184 (2001), 402-418 Zbl1068.47055MR1851003
- J.F. Bony, Minoration du nombre de résonances engendrées par une trajectoire fermée, Commun. Partial Differ. Equations 27 No.5-6 (2002), 1021-1078 Zbl1213.35332MR1916556
- N. Burq, Lower bounds for shape resonances widths of long rang Schrödinger operators, Am. J..Math. 124, No.4 (2002), 677-735 Zbl1013.35019MR1914456
- J.M. Combes, P. Duclos, M. Klein, R. Seiler, The shape resonance, Comm. Math. Phy. 110 (1987), 215-236 Zbl0629.47044MR887996
- B.E.J. Dahlberg, E. Trubowitz, A remark on two dimensional periodic potentials, Comment. Math. Helvetici 57 (1982), 130-134 Zbl0539.35059MR672849
- J. Dolbeault, I. Flores, GEOMETRY OF PHASE SPACE AND SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS IN A BALL, Trans. Amer. Math. Soc. 359 (2007), 4073-4087 MR2309176
- Yu. V. Egorov, M. El Aïdi, Spectre négatif d’un opérateur elliptique avec des conditions au bord de Robin, Publ. Mat. 45 (2001), 125-148 MR1829580
- Y.V. Egorov, V.A. Kondratiev, Estimates of the negative spectrum of an elliptic operator, in Spectral theory of operators, (Novgorod, 1989), Amer.Math.Soc.Transl.Ser.2, Amer.Math. Soc., Providence, RI 150 (1992), 129-206 Zbl0756.35058MR1157650
- E. Fabes, C. Kenig, R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. in P.D.E. 7 (1982), 77-116 Zbl0498.35042MR643158
- C.L. Fefferman, The Uncertainty Principle, Bull. A.M.S (1983), 129-206 Zbl0526.35080MR707957
- I.M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, (1966), Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963. English translation : Daniel Davey and Co., New York Zbl0143.36505MR190800
- Z. Guo, J. Wei, Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent, Trans. Amer. Math. Soc. 363 (2011), 4777-4799 Zbl1229.35079MR2806691
- E. Harell, B. Simon, The mathematical theory of resonances which have exponentially small widths, Duke Math. J. 47 (1980), 845-902 Zbl0455.35091MR596118
- B. Helffer, J. Sjöstrand, Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986) Zbl0631.35075MR871788
- P. D. Hislop, I. M. Sigal, Shape resonances in quantum mechanics, Differential equations and mathematical physics (Birmingham, Ala., 1986) 1285 (1987), 180-196, Springer, Berlin Zbl0653.46074MR921268
- P.D. Hislop, I.M. Sigal, Semiclassical resolvent estimates, Ann. Inst. H.Poincaré Phys. Théor. 51 (1989), 187-198 Zbl0719.35064MR1033616
- R. Kerman, T. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators, Ann.Inst.Fourier,Grenoble(36) 4 (1986), 207-228 Zbl0591.47037MR867921
- A. Martin, Résonance dans l’approximation de Born Oppenheimer I, Journal of Differ. Eq. (1991), 204-234 Zbl0737.35046MR1111174
- A. Martin, Résonance dans l’approximation de Born Oppenheimer II, Commun.Math.Phys. 135 (1991), 517-530 Zbl0737.35047MR1091576
- Vladimir Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, 342 (2011), Springer, Heidelberg MR2777530
- L. Parnovski, A. Sobolev, On the Beth-Sommerfeld conjecture for the polyharmonic operator, Duke Math. J. 107 Number 2 (2001), 209-238 Zbl1092.35025MR1823047
- V. Petkov, M. Zworski, Breit-Wigner approximation and the distribution of resonances, Comm. Math. Phy. 204 (1999), 329-351 Zbl0936.47004MR1704278
- V.N. Popov, M. Skriganov, A remark on the spectral structure of the two di- mensional Schrödinger operator with a periodic potential, Zap. Nauchn. Sem. LOMI AN SSSR 109 (1981), 131-133 Zbl0492.47024MR629118
- Michael Reed, Barry Simon, Methods of modern mathematical physics. I, (1980), Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York Zbl0459.46001MR751959
- M.A. Shubin, Pseudodifferential Operators and Spectral Theory, (2001), Second Edition, Springer-Verlag Zbl0616.47040MR1852334
- M. Skriganov, Finiteness of the number of gaps in the spectrum of the mutlidimensional polyharmonic operator with a periodic potential., Mat. Sb (Engl. transl. : Math. USSR Sb. 41 (1982) 113 (1980), 131-145 Zbl0464.35064MR590542
- M. M. Skriganov, Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Trudy Mat. Inst. Steklov. 171 (1985) Zbl0567.47004MR798454
- O.A. Veliev., Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe-Sommerfeld conjecture, Functional Anal. Appl. 21 (1987), 87-99 Zbl0638.47049MR902289
- I. Verbitsky, Nonlinear potentials and trace inequalities, The Maz’ya anniversary collection, Vol2 (Rostock, 1998), 323-343, Oper.Theory Adv.Appl., Birkhäuser, Basel, 110 (1998), 323-343 Zbl0941.31001MR1747901
- M. Zworski, Resonances in physics in geometry, Notices Amer. Math. Soc. 46 (1999), 319-328 Zbl1177.58021MR1668841
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.