The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we investigate a class of abstract degenerate fractional differential equations with Caputo derivatives. We consider subordinated fractional resolvent families generated by multivalued linear operators, which do have removable singularities at the origin. Semi-linear degenerate fractional Cauchy problems are also considered in this context.
We study an integro-differential operator Φ: H̅¹ → L² of Fredholm type and give sufficient conditions for Φ to be a diffeomorphism. An application to functional equations is presented.
2000 Mathematics Subject Classification: Primary 26A33; Secondary
47G20, 31B05We study a singular value problem and the boundary Harnack principle
for the fractional Laplacian on the exterior of the unit ball.
Currently displaying 1 –
6 of
6