The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
An existence and regularity theorem is proved for integral equations of convolution type which contain hysteresis nonlinearities. On the basis of this result, frequency-domain stability criteria are derived for feedback systems with a linear infinite-dimensional system in the forward path and a hysteresis nonlinearity in the feedback path. These stability criteria are reminiscent of the classical circle criterion which applies to static sector-bounded nonlinearities. The class of hysteresis operators...
An existence and regularity theorem is proved for integral equations
of convolution type which contain hysteresis nonlinearities. On
the basis of this result, frequency-domain stability criteria are
derived for feedback systems with a linear infinite-dimensional
system in the forward path and a hysteresis nonlinearity in the
feedback path. These stability criteria are reminiscent of the
classical circle criterion which applies to static sector-bounded
nonlinearities. The class of hysteresis operators...
L'attività di ricerca di chi scrive si è finora indirizzata principalmente verso l'esame dei modelli di transizione di fase, dei modelli di isteresi, e delle relative equazioni non lineari alle derivate parziali. Qui si illustrano brevemente tali problematiche, indicando alcuni degli elementi che le collegano tra di loro. Il lavoro è organizzato come segue. I paragrafi 1, 2, 3 vertono sulle transizioni di fase: si introducono le formulazioni forte e debole del classico modello di Stefan, e si illustrano...
We study a finite horizon problem for a system whose evolution is governed by a controlled ordinary differential equation, which takes also account of a hysteretic component: namely, the output of a Preisach operator of hysteresis. We derive a discontinuous infinite dimensional Hamilton–Jacobi equation and prove that, under fairly general hypotheses, the value function is the unique bounded and uniformly continuous viscosity solution of the corresponding Cauchy problem.
We study a finite horizon problem for a system whose evolution is
governed by a controlled ordinary differential equation, which takes
also account of a hysteretic component: namely, the output
of a Preisach operator of hysteresis. We derive a discontinuous
infinite
dimensional Hamilton–Jacobi equation and prove that, under fairly
general hypotheses, the value function is the unique bounded and
uniformly continuous viscosity solution of the corresponding Cauchy
problem.
Currently displaying 21 –
25 of
25