Transizioni di fase ed isteresi

Augusto Visintin

Bollettino dell'Unione Matematica Italiana (2000)

  • Volume: 3-B, Issue: 1, page 31-77
  • ISSN: 0392-4041

Abstract

top
L'attività di ricerca di chi scrive si è finora indirizzata principalmente verso l'esame dei modelli di transizione di fase, dei modelli di isteresi, e delle relative equazioni non lineari alle derivate parziali. Qui si illustrano brevemente tali problematiche, indicando alcuni degli elementi che le collegano tra di loro. Il lavoro è organizzato come segue. I paragrafi 1, 2, 3 vertono sulle transizioni di fase: si introducono le formulazioni forte e debole del classico modello di Stefan, e si illustrano alcune generalizzazioni motivate fisicamente. Nei paragrafi 4, 5, 6 si definisce il concetto di operatore di isteresi, si forniscono alcuni esempi, e si discutono alcune equazioni alle derivate parziali in cui figurano tali operatori. Le due parti sono presentate in modo da consentirne una lettura indipendente.

How to cite

top

Visintin, Augusto. "Transizioni di fase ed isteresi." Bollettino dell'Unione Matematica Italiana 3-B.1 (2000): 31-77. <http://eudml.org/doc/195422>.

@article{Visintin2000,
abstract = {L'attività di ricerca di chi scrive si è finora indirizzata principalmente verso l'esame dei modelli di transizione di fase, dei modelli di isteresi, e delle relative equazioni non lineari alle derivate parziali. Qui si illustrano brevemente tali problematiche, indicando alcuni degli elementi che le collegano tra di loro. Il lavoro è organizzato come segue. I paragrafi 1, 2, 3 vertono sulle transizioni di fase: si introducono le formulazioni forte e debole del classico modello di Stefan, e si illustrano alcune generalizzazioni motivate fisicamente. Nei paragrafi 4, 5, 6 si definisce il concetto di operatore di isteresi, si forniscono alcuni esempi, e si discutono alcune equazioni alle derivate parziali in cui figurano tali operatori. Le due parti sono presentate in modo da consentirne una lettura indipendente.},
author = {Visintin, Augusto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {2},
number = {1},
pages = {31-77},
publisher = {Unione Matematica Italiana},
title = {Transizioni di fase ed isteresi},
url = {http://eudml.org/doc/195422},
volume = {3-B},
year = {2000},
}

TY - JOUR
AU - Visintin, Augusto
TI - Transizioni di fase ed isteresi
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/2//
PB - Unione Matematica Italiana
VL - 3-B
IS - 1
SP - 31
EP - 77
AB - L'attività di ricerca di chi scrive si è finora indirizzata principalmente verso l'esame dei modelli di transizione di fase, dei modelli di isteresi, e delle relative equazioni non lineari alle derivate parziali. Qui si illustrano brevemente tali problematiche, indicando alcuni degli elementi che le collegano tra di loro. Il lavoro è organizzato come segue. I paragrafi 1, 2, 3 vertono sulle transizioni di fase: si introducono le formulazioni forte e debole del classico modello di Stefan, e si illustrano alcune generalizzazioni motivate fisicamente. Nei paragrafi 4, 5, 6 si definisce il concetto di operatore di isteresi, si forniscono alcuni esempi, e si discutono alcune equazioni alle derivate parziali in cui figurano tali operatori. Le due parti sono presentate in modo da consentirne una lettura indipendente.
LA - ita
UR - http://eudml.org/doc/195422
ER -

References

top
  1. ABRAHAM, F. F., Homogeneous Nucleation Theory, Academic Press, New York1974. 
  2. BRICE, J. C., The Growth of Crystals from Liquids, North-Holland, Amsterdam1973. 
  3. CHALMERS, B., Principles of Solidification, Wiley, New York1964. 
  4. CHRISTIAN, J. W., The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory, Pergamon Press, London1975. 
  5. DOREMUS, R. H., Rates of Phase Transformations, Academic Press, Orlando1985. 
  6. FLEMINGS, M. C., Solidification Processing, McGraw-Hill, New York1973. 
  7. KURZ, W.- FISHER, D. J., Fundamentals of Solidification, Trans Tech, Aedermannsdorf1989. 
  8. R. PAMPLIN (ed.), Crystal Growth, Pergamon Press, Oxford1975. 
  9. SKRIPOV, V. P., Metastable Liquids, Wiley, Chichester1974. 
  10. TURNBULL, D., Phase Changes, Solid State Physics, 3 (1956), 225-306. 
  11. UBBELOHDE, A. R., The Molten State of Matter, Wiley, Chichester1978. 
  12. WOODRUFF, P. D., The Solid-Liquid Interface, Cambridge Univ. Press, Cambridge1973. 
  13. ALEXIADES, V.- SOLOMON, A. D., Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing, Washington DC1993. 
  14. BROKATE, M.- SPREKELS, J., Hysteresis and Phase Transitions, Springer, Heidelberg1996. Zbl0951.74002MR1411908
  15. GURTIN, M. E., Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon Press, Oxford1993. Zbl0787.73004MR1402243
  16. MEIRMANOV, A. M., The Stefan Problem, De Gruyter, Berlin1992 (Russian edition: Nauka, Novosibirsk1986). Zbl0751.35052MR1154310
  17. ROMANO, A., Thermomechanics of Phase Transitions in Classical Field Theory, World Scientific, Singapore1993. Zbl0827.73001MR1347688
  18. RUBINSTEIN, L., The Stefan Problem.A.M.S., Providence1971 (Russian edition: Zvaigzne, Riga1967). MR222436
  19. VISINTIN, A., Models of phase transitions, Birkhauser, Boston1996. Zbl0882.35004MR1423808
  20. CANNON, J. R., The One-Dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, Vol. 23, Addison Wesley, Menlo Park1984. Zbl0567.35001MR747979
  21. CHAPMAN, S. J.- HOWISON, S. D.- OCKENDON, J. R., Macroscopic models for superconductivity, S.I.A.M. Rev., 34 (1992), 529-560. Zbl0769.73068MR1193011
  22. DANILYUK, I. I., On the Stefan problem, Russian Math. Surveys, 40 (1985), 157-223. Zbl0604.35080MR810813
  23. FASANO, A., Las Zonas Pastosas en el Problema de Stefan, Cuad. Inst. Mat. Beppo Levi, No. 13, Rosario1987. Zbl0642.35081MR914370
  24. FASANO, A., Esperienza di collaborazione con industrie su programmi a lungo termine, Boll. Un. Matem. Ital., 7-A (1997), 1-40. Zbl0973.00517
  25. FASANO, A., Phase transition with supercooling, Boll. Un. Matem. Ital., (8) (1998), 49-69. Zbl0903.35095MR1619031
  26. MAGENES, E., Problemi di Stefan bifase in piu variabili spaziali, Le Matematiche, 36 (1981), 65-108. Zbl0545.35096MR736797
  27. MAGENES, E., Stefan problems with a concentrated capacity, Boll. Un. Matem. Ital., (8) (1998), 71-81. Zbl0904.35103MR1619035
  28. NIEZGOÓLDKA, M., Stefan-like problems, In: Free Boundary Problems: Theory and Applications (A. Fasano, M. Primicerio, eds.). Pitman, Boston1983, pp. 321-347. MR714922
  29. OLEĬNIK, O. A.- PRIMICERIO, M.- RADKEVICH, E. V., Stefan-like problems, Meccanica, 28 (1993), 129-143. Zbl0786.76091
  30. PRIMICERIO, M., Problemi a contorno libero per l'equazione della diffusione, Rend. Sem. Mat. Univers. Politecn. Torino, 32 (1973-74), 183-206. Zbl0307.76048MR477466
  31. PRIMICERIO, M., Problemi di diffusione a frontiera libera, Boll. Un. Matem. Ital., 18-A (1981), 11-68. Zbl0468.35082
  32. RODRIGUES, J.-F., The variational inequality approach to the one-phase Stefan problem, Acta Applicandae Mathematicae, 8 (1987), 1-35. Zbl0653.35083MR871691
  33. TARZIA, D. A., A Bibliography on Moving-Free Boundary Problems for the Heat Diffusion Equation. The Stefan Problem, Progetto Nazionale M.P.I. «Equazioni di Evoluzione e Applicazioni Fisico-Matematiche», Firenze, 1988. Zbl0694.35221MR1007840
  34. VERDI, C., Numerical methods for phase transition problems, Boll. Un. Matem. Ital., (8) (1998), 83-108. Zbl0896.65064MR1619039
  35. VISINTIN, A., Introduction to the models of phase transitions, Bull. Un. Matem. Ital., I-B (1998), 1-47. Zbl0903.35097MR1619027
  36. WILSON, D. G.- SOLOMON, A. D.- TRENT, J. S., A Bibliography on Moving Boundary Problems with Key Word Index, Oak Ridge National Laboratory, 1979. 
  37. A. BOSSAVIT-A. DAMLAMIAN-M. FRÉMOND (EDS.), Free Boundary Problems: Theory and Applications, Pitman, Boston1985. 
  38. J. M. CHADAM-H. RASMUSSEN (EDS.), Emerging Applications in Free Boundary Problems, Longman, Harlow1993. MR1216352
  39. J. M. CHADAM-H. RASMUSSEN (eds.), Free Boundary Problems Involving Solids, Longman, Harlow1993. MR1216392
  40. J. M. CHADAM-H. RASMUSSEN (eds.), Free Boundary Problems in Fluid Flow with Applications, Longman, Harlow1993. MR1216373
  41. J. I. DIAZ-M. A. HERRERO-A. LIÑÁN, J. L. VÁZQUEZ (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow1995. MR1342322
  42. A. FASANO-M. PRIMICERIO (eds.), Free Boundary Problems: Theory and Applications, Pitman, Boston1983. Zbl0504.00012MR714939
  43. K.-H. HOFFMANN-J. SPREKELS (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow1990. Zbl0703.00015
  44. H. HOFFMANN-J. SPREKELS (eds.), Free Boundary Value Problems, Birkhäuser, Boston1990. Zbl0702.00021MR1111018
  45. N. KENMOCHI-M. NIEZGÓDKA-P. STRZELECKI (eds.), Nonlinear Analysis and Applications, Gakkotosho, Tokyo1996. MR1422923
  46. E. MAGENES (ed.), Free Boundary Problems, Istituto di Alta Matematica, Roma1980. 
  47. M. NIEZGÓDKA-P. STRZELECKI (EDS.), Free Boundary Problems: Theory and Applications, Longman, Harlow1996. Zbl0856.00025MR1462964
  48. J. R. OCKENDON-W. R. HODGKINS (eds.), Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford1975. Zbl0295.76064
  49. D. G. WILSON-A. D. SOLOMON-P. T. BOGGS (eds.), Moving Boundary Problems, Academic Press, New York1978. Zbl0432.00011MR466887
  50. ATHANASSOPOULOS, I.- CAFFARELLI, L. A.- SALSA, S., Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Ann. Math., 143 (1996), 413-434. Zbl0853.35049MR1394964
  51. ATHANASSOPOULOS, I.- CAFFARELLI, L. A.- SALSA, S., Regularity of the free boundary in phase transition problems, Acta Math., 176 (1996). Zbl0891.35164
  52. ATHANASSOPOULOS, I.- CAFFARELLI, L. A.- SALSA, S., Phase transition problems of parabolic type: flat free boundaries are smooth, Comm. Pure Appl. Math., 51 (1998), 77-112. Zbl0924.35197MR1486632
  53. BAIOCCHI, C., Su un problema di frontiera libera connesso a questioni di idraulica, Ann. Mat. Pura Appl., 92 (1972), 107-127. Zbl0258.76069MR408443
  54. BAIOCCHI, C.- CAPELO, A., Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, Wiley, Chichester1983. Zbl0551.49007MR745619
  55. BERGER, A. E.- BRÉZIS, H.- ROGERS, J. W., A numerical method for solving the problem u t - Δ f u = 0 , R.A.I.R.O., Analyse Numérique, 13 (1979), 297-312. Zbl0426.65052MR555381
  56. BERGER, A. E.- ROGERS, J. W., Some properties of the nonlinear semigroup for the problem u t - Δ f u = 0 , Nonlinear Analysis, T.M.A., 8 (1984), 909-939. Zbl0557.35129MR753767
  57. BRÉZIS, H., On some degenerate nonlinear parabolic equations, In: Nonlinear Functional Analysis (F. E. Browder, ed.). Proc. Symp. Pure Math., XVIIIA.M.S., Providence1970, pp. 28-38. Zbl0231.47034MR273468
  58. CAFFARELLI, L. A., The regularity of free boundaries in higher dimensions, Acta Math., 139 (1977), 155-184. Zbl0386.35046MR454350
  59. CAFFARELLI, L. A., Some aspects of the one-phase Stefan problem, Indiana Univ. Math. J., 27 (1978), 73-77. Zbl0393.35064MR466965
  60. CAFFARELLI, L. A.- EVANS, L. C., Continuity of the temperature in the two-phase Stefan problem, Arch. Rational Mech. Anal., 81 (1983), 199-220. Zbl0516.35080MR683353
  61. CAFFARELLI, L. A.- FRIEDMAN, A., Continuity of the temperature in the Stefan problem, Indiana Univ. Math. J., 28 (1979), 53-70. Zbl0406.35032MR523623
  62. CANNON, J. R.- HILL, C. D., On the infinite differentiability of the free boundary in a Stefan problem, J. Math. Anal. Appl., 22 (1968), 385-387. Zbl0167.10504MR225013
  63. DAMLAMIAN, A., Homogenization for eddy currents, Delft Progress Report, 6 (1981), 268-275. Zbl0483.35004
  64. DIBENEDETTO, E., Regularity results for the n-dimensional two-phase Stefan problem, Boll. Un. Mat. Ital. Suppl. (1980), 129-152. Zbl0458.35098MR677695
  65. DIBENEDETTO, E., Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl., 121 (1982), 131-176. Zbl0503.35018MR663969
  66. DIBENEDETTO, E.- VESPRI, V., On the singular equation β u t = Δ u , Arch. Rational Mech. Anal., 132 (1995), 247-309. Zbl0849.35060MR1365831
  67. DONNELLY, J. D. P., A model for non-equilibrium thermodynamic processes involving phase changes, J. Inst. Math. Appl., 24 (1979), 425-438. Zbl0426.35060MR556152
  68. DUVAUT, G., Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degrés), C.R. Acad. Sci. Paris, Série I, 276-A (1973), 1461-1463. Zbl0258.35037MR328346
  69. DUVAUT, G., The solution of a two-phase Stefan by a variational inequality, In: Moving Boundary Problems in Heat Flow and Diffusion (J. R. Ockendon, W. R. Hodgkins, eds.), Clarendon Press, Oxford1975, pp. 173-181. 
  70. EVANS, G. W., A note on the existence of a solution to a Stefan problem, Quart. Appl. Math., IX (1951), 185-193. Zbl0043.41101
  71. FASANO, A.- PRIMICERIO, M., General free boundary problems for the heat equation, J. Math. Anal. Appl.: I, 57 (1977), 694-723; II, 58 (1977), 202-231; III, 59 (1977), 1-14. Zbl0355.35037
  72. FASANO, A.- PRIMICERIO, M., Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., 72 (1979), 247-273. Zbl0421.35080MR552335
  73. FASANO, A.- PRIMICERIO, M., Phase-change with volumetric heat sources: Stefan's scheme vs. enthalpy formulation, Boll. Un. Mat. Ital. Suppl., 4 (1985), 131-149. Zbl0578.35087MR784301
  74. FASANO, A.- PRIMICERIO, M., Mushy regions with variable temperature in melting processes, Boll. Un. Mat. Ital., 4-B (1985), 601-626. Zbl0591.35088MR805431
  75. FASANO, A.- PRIMICERIO, M., A parabolic-hyperbolic free boundary problem, S.I.A.M. J. Math. Anal., 17 (1986), 67-73. Zbl0594.35092MR819213
  76. FASANO, A.- PRIMICERIO, M., A critical case for the solvability of Stefan-like problems, Math. Meth. Appl. Sci., 5 (1983), 84-96. Zbl0526.35078MR690897
  77. FASANO, A.- PRIMICERIO, M.- KAMIN, S., Regularity of weak solutions of one-dimensional two-phase Stefan problems, Ann. Mat. Pura Appl., 115 (1977), 341-348. Zbl0378.35008MR477460
  78. FRÉMOND, M., Variational formulation of the Stefan problem, coupled Stefan problem, frost propagation in porous media, In: Proc. Conf. Computational Methods in Nonlinear Mechanics (J. T. Oden, ed.). University of Texas, Austin (1974), pp. 341-349. Zbl0316.76063MR398299
  79. FRIEDMAN, A., Free boundary problems for parabolic equations. I, II, III, J. Math. Mech., 8 (1959), 499-517; 9 (1960), 19-66; 9 (1960), 327-345. Zbl0199.42301
  80. FRIEDMAN, A., Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs1964. Zbl0144.34903MR181836
  81. FRIEDMAN, A., The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), 51-87. Zbl0162.41903MR227625
  82. FRIEDMAN, A., One dimensional Stefan problems with non-monotone free boundary, Trans. Amer. Math. Soc., 133 (1968), 89-114. Zbl0162.42001MR227626
  83. FRIEDMAN, A., Analyticity of the free boundary for the Stefan problem, Arch. Rational Mech. Anal., 61 (1976), 97-125. Zbl0329.35034MR407452
  84. FRIEDMAN, A.- KINDERLEHRER, D., A one phase Stefan problem, Indiana Univ. Math. J., 25 (1975), 1005-1035. Zbl0334.49002MR385326
  85. GÖTZ, I.G.- ZALTZMAN, B. B., Nonincrease of mushy region in a nonhomogeneous Stefan problem, Quart. Appl. Math., XLIX (1991), 741-746. Zbl0756.35119MR1134749
  86. JIANG, L. S., The two-phase Stefan problem. I, II, Chinese Math., 4 (1963), 686-702; 5 (1964), 36-53. Zbl0149.31601
  87. KAMENOMOSTSKAYA, S., On the Stefan problem, Math. Sbornik, 53 (1961), 489-514 (Russian). Zbl0102.09301
  88. KINDERLEHRER, D.- NIRENBERG, L., Regularity in free boundary value problems, Ann. Scuola Norm. Sup. Pisa, 4 (1977), 373-391. Zbl0352.35023MR440187
  89. KINDERLEHRER, D.- NIRENBERG, L., The smoothness of the free boundary in the one-phase Stefan problem, Comm. Pure Appl. Math., 31 (1978), 257-282. Zbl0391.35060MR480348
  90. KOLODNER, I. I., Free boundary problem for the heat equation with applications to problems with change of phase, Comm. Pure Appl. Math., 10 (1957), 220-231. Zbl0070.43803
  91. LAMÉ, G., CLAYPERON, B.P., Mémoire sur la solidification par refroidissement d'un globe solide, Ann. Chem. Phys., 47 (1831), 250-256. 
  92. LUCKHAUS, S., Solutions of the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, Euro. J. Appl. Math., 1 (1990), 101-111. Zbl0734.35159MR1117346
  93. MEIRMANOV, A. M., On the classical solvability of the Stefan problem, Soviet Math. Dokl., 20 (1979), 1426-1429. Zbl0498.35087
  94. MEIRMANOV, A. M., On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, Math. U.S.S.R.-Sbornik, 40 (1981), 157-178. Zbl0467.35053
  95. MEIRMANOV, A. M., An example of nonexistence of a classical solution of the Stefan problem, Soviet Math. Dokl., 23 (1981), 564-566. Zbl0545.35097MR620870
  96. OLEĬNIK, O. A., A method of solution of the general Stefan problem, Soviet Math. Dokl., 1 (1960), 1350-1353. Zbl0131.09202MR125341
  97. PRIMICERIO, M., Mushy regions in phase-change problems, In: Applied Functional Analysis (R. Gorenflo, K.-H. Hoffmann, eds.). Lang, Frankfurt (1983), pp. 251-269. Zbl0518.35087MR685609
  98. J.-F. RODRIGUES (ed.), Mathematical Models for Phase Change Problems, Birkhäuser, Basel1989. Zbl0676.00021MR1038061
  99. RUBINSTEIN, L., On the determination of the position of the boundary which separates two phases in the one-dimensional problem of Stefan, Dokl. Acad. Nauk USSR, 58 (1947), 217-220. Zbl0032.13101MR22979
  100. RUBINSTEIN, L.- FASANO, A.- PRIMICERIO, M., Remarks on the analyticity of the free boundary for the one-dimensional Stefan problem, Ann. Mat. Pura Appl., 125 (1980), 295-311. Zbl0456.35096MR605212
  101. SCHAEFFER, D., A new proof of infinite differentiability of the free boundary in the Stefan problem, J. Differential Equations, 20 (1976), 266-269. Zbl0314.35044MR390499
  102. SESTINI, G., Esistenza di una soluzione in problemi analoghi a quello di Stefan, Rivista Mat. Univ. Parma, 3 (1952), 3-23; 8 (1958), 1-209. Zbl0048.43406
  103. SHOWALTER, R. E., Mathematical formulation of the Stefan problem, Int. J. Eng. Sc., 20 (1982), 909-912. Zbl0506.76103MR660566
  104. STEFAN, J., Über einige Probleme der Theorie der Wärmeleitung, Sitzungber., Wien, Akad. Mat. Natur., 98 (1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442. JFM21.1197.01
  105. VISINTIN, A., Two-scale Stefan problem with surface tension, In: Nonlinear Analysis and Applications (N. Kenmochi, M. Niezgódka, P. Strzelecki, eds.) (Gakkotosho, Tokyo1996), 405-424. Zbl0868.35144MR1422948
  106. VISINTIN, A., Two-scale model of phase transitions, Physica D, 106 (1997), 66-80. Zbl0935.80005MR1460449
  107. VISINTIN, A., Nucleation and mean curvature flow, Communications in P.D.E.s, 23 (1998), 17-35. Zbl0901.53045MR1608492
  108. ZIEMER, W. P., Interior and boundary continuity of weak solutions of degenerate parabolic equations, Trans. A.M.S., 271 (1982), 733-748. Zbl0506.35053MR654859
  109. BERTOTTI, G., Hysteresis in Magnetism, Academic Press, Boston1998. 
  110. BROKATE, M., Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ, Lang, Frankfurt am Main (1987). English translation: Optimal control of ordinary differential equations with nonlinearities of hysteresis type. In: Automation and Remote Control, 52 (1991), 53 (1992). Zbl0691.49025MR1031251
  111. BROKATE, M.- SPREKELS, J., Hysteresis and Phase Transitions, Springer, Berlin1996 Zbl0951.74002MR1411908
  112. DELLA TORRE, E., Magnetic Hysteresis, IEEE Press, 1999. 
  113. IVÁNYI, A., Hysteresis Models in Electromagnetic Computation, Akademḿiai Kiado, Budapest, 1997. 
  114. KRASNOSEL'SKĬ, M. A.- POKROVSKIĬ, A. V., Systems with Hysteresis, Springer, Berlin1989 (Russian ed. Nauka, Moscow1983). Zbl0665.47038MR987431
  115. KREJČÍ, P., Convexity, Hysteresis and Dissipation in Hyperbolic Equations, Gakkotosho, Tokyo1997. Zbl1187.35003
  116. MAYERGOYZ, I. D., Mathematical Models of Hysteresis, Springer, New York1991. Zbl0723.73003MR1083150
  117. VISINTIN, A., Differential Models of Hysteresis, Springer, Berlin1994. Zbl0820.35004MR1329094
  118. BROKATE, M., Elastoplastic constitutive laws of nonlinear kinematic hardening type, In: Functional analysis with current applications in science, technology and industry (M. Brokate, A. H. Siddiqi, eds.), Longman, Harlow (1998), pp. 238-272. Zbl0911.73021MR1607891
  119. HUO, Y.- MUELLER, I., Non-equilibrium thermodynamics of pseudoelasticity, Cont. Mech. Thermodyn., 5 (1993), 163-204. Zbl0780.73006
  120. KRASNOSEL'SKIĬ, M. A., Equations with non-linearities of hysteresis type, VII Int. Konf. Nichtlin. Schwing., Berlin 1975; Abh. Akad. Wiss. DDR, 3 (1977), 437-458 (Russian). Zbl0406.93032
  121. KREJČÍ, P., Evolution variational inequalities and multidimensional hysteresis operators, In: Nonlinear differential equations (P. Drábek, P. Krejčí, P. Takáč, eds.) Research Notes in Mathematics, Chapman & Hall/CRC, London (1999), pp. 47-110. Zbl0949.47053
  122. MUELLER, I., Six lectures on shape memory, Proceedings of a Summer School held in Banff in 1995. AMS. CRM Proceedings and Lecture Notes, 13 (1998), pp. 125-161. Zbl0909.73013MR1619114
  123. MACKI, J. W.- NISTRI, P.- ZECCA, P., Mathematical models for hysteresis, S.I.A.M. Review, 35 (1993), 94-123. Zbl0771.34018MR1207799
  124. VISINTIN, A., Mathematical models of hysteresis, In: Topics in Nonsmooth Mechanics (J. J. Moreau, P. D. Panagiotopoulos, G. Strang, eds.), Birkhäuser, Basel1988, pp. 295-326. Zbl0656.73043MR957094
  125. VISINTIN, A., Mathematical models of hysteresis, In: Modelling and optimization of distributed parameter systems (K. Malanowski et al., ed.), Chapman and Hall, (1996), pp. 71-80 Zbl0906.93006MR1388519
  126. VISINTIN, A., Mathematical models of hysteresis. A survey, In: Nonlinear Partial Differential Equations. College de France. Vol. XIII (D. Cioranescu, J. L. Lions, eds.), Longman, Harlow (1998), pp. 327-338. Zbl1007.47034MR1773088
  127. VISINTIN, A., Six talks on hysteresis, Proceedings of a Summer School held in Banff in 1995. AMS. CRM Proceedings and Lecture Notes, 13 (1998), pp. 207-236. Zbl0918.35067MR1619117
  128. BROKATE, M.- DRESSLER, K.- KREJČÍ, P.- SEIDMAN, T. I.- TAVERNINI, L.- VISINTIN, A., Contributions to the session on Problems in Hysteresis, In: Nonlinear Analysis, Proceedings of the First World Congress of Nonlinear Analysts (ed. V. Laksmikantham), De Gruyter, Berlin (1996), 797-806. Zbl0858.47039
  129. BROKATE, M.- KENMOCHI, N.- MÜLLER, I.- RODRIGUES, J. F.- VERDI, C. (A. VISINTIN, ed.), Phase Transitions and Hysteresis, Lecture Notes in Mathematics, vol. 1584. Springer, Berlin1994. MR1321829
  130. A. VISINTIN (ed.), Models of Hysteresis, Proceedings of a meeting held in Trento in 1991. Longman, Harlow1993. Zbl0785.00016MR1235109
  131. BOSSAVIT, A.- EMSON, C.- MAYERGOYZ, I. D., Géométrie différentielle, éléments finis, modèles d'hystérésis, Eyrolles, Paris1991. 
  132. BOUC, R., Solution périodique de l'équation de la ferrorésonance avec hystérésis, C.R. Acad. Sci. Paris, Serie A, 263 (1966), 497-499. Zbl0152.42103MR201106
  133. BOUC, R., Modèle mathématique d'hystérésis et application aux systèmes à un degré de liberté, These, Marseille1969. Zbl0237.73020
  134. BROKATE, M., Optimale Steuerung von gewohnlichen Differentialgleichungen mit Nichtlinearitaten vom Hysteresis-Typ, Habilitations Schrift. Lang, Frankfurt am Main1987. English translation: Optimal control of ordinary differential equations with nonlinearities of hysteresis type. In: Automation and Remote Control, 52 (1991) and 53 (1992). Zbl0691.49025MR1031251
  135. BROKATE, M., On a characterization of the Preisach model for hysteresis, Rend. Sem. Mat. Padova, 83 (1990), 153-163. Zbl0719.47053MR1066436
  136. CHERNORUTSKII., V.- RACHINSKII, D.: On uniqueness of an initial-problem for ODE with hysteresis, NoDEA, 4 (1997), 391-399. Zbl0882.34004MR1458534
  137. DAMLAMIAN, A.- VISINTIN, A., Une géneralisation vectorielle du modèle de Preisach pour l'hystérésis, C. R. Acad. Sci. Paris, Serie I, 297 (1983), 437-440. Zbl0546.35068MR732853
  138. DUHEM, P., The evolution of mechanics, Sijthoff and Noordhoff, Alphen aan den Rijn, 1980. Original edition: L'évolution de la méchanique. Joanin, Paris1903. Zbl0424.01002
  139. HILPERT, M., On uniqueness for evolution problems with hysteresis, In: Mathematical Models for Phase Change Problems (J. F. Rodrigues, ed.) (Birkhauser, Basel1989), 377-388. Zbl0701.35009MR1038080
  140. HOFFMANN, K.-H.- SPREKELS, J.- VISINTIN, A., Identification of hysteresis loops, J. Comp. Phys., 78 (1988), 215-230. Zbl0659.65125MR959083
  141. ISHLINSKIĬ, A.Y., Some applications of statistical methods to describing deformations of bodies, Izv. Akad. Nauk S.S.S.R., Techn. Ser., 9 (1944), 580-590 (Russian). 
  142. MADELUNG, E., Uber Magnetisierung durch schnellverlaufende Strome und die, Wirkungsweise des Rutherford-Marconischen Magnetdetektors. Ann. Phys., 17 (1905), 861-890. 
  143. KRASNOSEL’SKIĬ, M.A.- DARINSKIĬ, B. M.- EMELIN, I. V.- ZABREĬKO, P. P., LIFSIC, E. A. - POKROVSKIĬ, A. V., Hysterant operator, Soviet Math. Soviet Dokl., 11 (1970), 29-33.  Zbl0212.58002
  144. MAYERGOYZ, I. D., Mathematical models of hysteresis, Phys. Rev. Letters, 56 (1986), 1518-1521. 
  145. MAYERGOYZ, I. D., Mathematical models of hysteresis, I.E.E.E. Trans. Magn., 22 (1986), 603-608.  
  146. MRÓZ, Z., On the description of anisotropic work-hardening, J. Mech. Phys. Solids, 15 (1967), 163-175. 
  147. MÜLLER, I., A model for a body with shape-memory, Arch. Rational Mech. Anal., 70 (1979), 61-77.  MR535632
  148. MÜLLER, I., On the size of hysteresis in pseudoelasticity, Continuum Mech. Thermodyn., 1 (1989), 125-142. MR1050819
  149. NÉEL, L., Theorie des lois d’aimantation de Lord Rayleigh. I. Les déplacements d’une paroi isolée; II. Multiples domaines et champ coercive, Cahiers de Physique, 12 (1942), 1-20; 13 (1943), 18-30. 
  150. PRANDTL, L.: Spannungverteilung in plastischen Körpern, In: Proc. 1st Intern. Congr. Appl. Mech. Delft (1924), pp. 43-54. 
  151. PRANDTL, L., Ein Gedankenmodell zur kinetischen Theorie der festen Körper, Z. Angew. Math. Mech., 8 (1928), 85-106.  JFM54.0847.04
  152. PREISACH, F., Über die magnetische Nachwirkung, Z. Physik, 94 (1935), 277-302. 
  153. RAYLEIGH, On the behaviour of iron and steel under the operation of feeble magnetic forces, Phil. Mag., 23 (1887), 225-248.  JFM19.1131.04
  154. VERDI, C.- VISINTIN, A., Numerical approximation of hysteresis problems, I.M.A. J. Numer. Anal., 5 (1985), 447-463. Zbl0608.65082MR816068
  155. VERDI, C.- VISINTIN, A., Numerical approximation of the Preisach model for hysteresis, Math. Model. and Numer. Anal., 23 (1989), 335-356.  Zbl0672.65115MR1001333
  156. VISINTIN, A., A model for hysteresis of distributed systems, Ann. Mat. Pura Appl., 131 (1982), 203-231. Zbl0494.35052MR681564
  157. VISINTIN, A., On the Preisach model for hysteresis, Nonlinear Analysis, T.M.A., 9 (1984), 977-996.  Zbl0563.35007MR760191
  158. VISINTIN, A., Hysteresis and semigroups, In: Models of hysteresis (A. Visintin, ed.), Longman, Harlow (1993), pp. 192-206. Zbl0834.35033MR1235125
  159. VISINTIN, A., Modified Landau-Lifshitz equation for ferromagnetism, Physica B, 233 (1997), 365-369.  
  160. WEISS, P.- DE FREUDENREICH, J., Etude de l’aimantation initiale en fonction de la température (suite et fin), Arch. Sci. Phys. Nat., (Genève), 42 (1916), 449-470. 
  161. BARBU, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden1976.  Zbl0328.47035MR390843
  162. BÉNILAN, H., Equations d’Évolution dans un Espace de Banach Quelconque et Applications, Thèse, Orsay1972. 
  163. BERTSCH, M.- PODIO-GUIDUGLI, P.- VALENTE, V., On the dynamics of deformable ferromagnets 1. Global weak solutions for soft ferromagnets at rest, Preprint, 1999. Zbl1097.74017
  164. BRÉZIS, H., Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam1973. Zbl0252.47055MR348562
  165. BROWN, W. F. JR., Micromagnetics, Krieger, Huntington1978. 
  166. CARSLAW, H. S.- JAEGER, J. C., Conduction of heat in solids, Clarendon Press and Oxford University Press, New York, 1988.  Zbl0972.80500MR959730
  167. DUVAUT, G.- LIONS, J. L., Les Inéquations en Mécanique et en Physique, Dunod, Paris1972. Zbl0298.73001MR464857
  168. LANDAU, L.- LIFSHITZ, E., On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Physik. Z. Sowietunion, 8 (1935), 153-169.  
  169. LANDAU, L.- LIFSHITZ, E., Statistical physics, Pergamon Press, Oxford1969.  Zbl0080.19702MR475051
  170. LIONS, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris1969. Zbl0189.40603MR259693
  171. VISINTIN, A., On Landau-Lifshitz equations in ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84.  Zbl0613.35018MR839320
  172. WEISS, P., L’hypothèse du champ moléculaire et la proprièté ferromagnétique, J. Physique, 6 (1907), 661-690. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.