Transizioni di fase ed isteresi
Bollettino dell'Unione Matematica Italiana (2000)
- Volume: 3-B, Issue: 1, page 31-77
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topVisintin, Augusto. "Transizioni di fase ed isteresi." Bollettino dell'Unione Matematica Italiana 3-B.1 (2000): 31-77. <http://eudml.org/doc/195422>.
@article{Visintin2000,
abstract = {L'attività di ricerca di chi scrive si è finora indirizzata principalmente verso l'esame dei modelli di transizione di fase, dei modelli di isteresi, e delle relative equazioni non lineari alle derivate parziali. Qui si illustrano brevemente tali problematiche, indicando alcuni degli elementi che le collegano tra di loro. Il lavoro è organizzato come segue. I paragrafi 1, 2, 3 vertono sulle transizioni di fase: si introducono le formulazioni forte e debole del classico modello di Stefan, e si illustrano alcune generalizzazioni motivate fisicamente. Nei paragrafi 4, 5, 6 si definisce il concetto di operatore di isteresi, si forniscono alcuni esempi, e si discutono alcune equazioni alle derivate parziali in cui figurano tali operatori. Le due parti sono presentate in modo da consentirne una lettura indipendente.},
author = {Visintin, Augusto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {2},
number = {1},
pages = {31-77},
publisher = {Unione Matematica Italiana},
title = {Transizioni di fase ed isteresi},
url = {http://eudml.org/doc/195422},
volume = {3-B},
year = {2000},
}
TY - JOUR
AU - Visintin, Augusto
TI - Transizioni di fase ed isteresi
JO - Bollettino dell'Unione Matematica Italiana
DA - 2000/2//
PB - Unione Matematica Italiana
VL - 3-B
IS - 1
SP - 31
EP - 77
AB - L'attività di ricerca di chi scrive si è finora indirizzata principalmente verso l'esame dei modelli di transizione di fase, dei modelli di isteresi, e delle relative equazioni non lineari alle derivate parziali. Qui si illustrano brevemente tali problematiche, indicando alcuni degli elementi che le collegano tra di loro. Il lavoro è organizzato come segue. I paragrafi 1, 2, 3 vertono sulle transizioni di fase: si introducono le formulazioni forte e debole del classico modello di Stefan, e si illustrano alcune generalizzazioni motivate fisicamente. Nei paragrafi 4, 5, 6 si definisce il concetto di operatore di isteresi, si forniscono alcuni esempi, e si discutono alcune equazioni alle derivate parziali in cui figurano tali operatori. Le due parti sono presentate in modo da consentirne una lettura indipendente.
LA - ita
UR - http://eudml.org/doc/195422
ER -
References
top- ABRAHAM, F. F., Homogeneous Nucleation Theory, Academic Press, New York1974.
- BRICE, J. C., The Growth of Crystals from Liquids, North-Holland, Amsterdam1973.
- CHALMERS, B., Principles of Solidification, Wiley, New York1964.
- CHRISTIAN, J. W., The Theory of Transformations in Metals and Alloys. Part 1: Equilibrium and General Kinetic Theory, Pergamon Press, London1975.
- DOREMUS, R. H., Rates of Phase Transformations, Academic Press, Orlando1985.
- FLEMINGS, M. C., Solidification Processing, McGraw-Hill, New York1973.
- KURZ, W.- FISHER, D. J., Fundamentals of Solidification, Trans Tech, Aedermannsdorf1989.
- R. PAMPLIN (ed.), Crystal Growth, Pergamon Press, Oxford1975.
- SKRIPOV, V. P., Metastable Liquids, Wiley, Chichester1974.
- TURNBULL, D., Phase Changes, Solid State Physics, 3 (1956), 225-306.
- UBBELOHDE, A. R., The Molten State of Matter, Wiley, Chichester1978.
- WOODRUFF, P. D., The Solid-Liquid Interface, Cambridge Univ. Press, Cambridge1973.
- ALEXIADES, V.- SOLOMON, A. D., Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing, Washington DC1993.
- BROKATE, M.- SPREKELS, J., Hysteresis and Phase Transitions, Springer, Heidelberg1996. Zbl0951.74002MR1411908
- GURTIN, M. E., Thermomechanics of Evolving Phase Boundaries in the Plane, Clarendon Press, Oxford1993. Zbl0787.73004MR1402243
- MEIRMANOV, A. M., The Stefan Problem, De Gruyter, Berlin1992 (Russian edition: Nauka, Novosibirsk1986). Zbl0751.35052MR1154310
- ROMANO, A., Thermomechanics of Phase Transitions in Classical Field Theory, World Scientific, Singapore1993. Zbl0827.73001MR1347688
- RUBINSTEIN, L., The Stefan Problem.A.M.S., Providence1971 (Russian edition: Zvaigzne, Riga1967). MR222436
- VISINTIN, A., Models of phase transitions, Birkhauser, Boston1996. Zbl0882.35004MR1423808
- CANNON, J. R., The One-Dimensional Heat Equation, Encyclopedia of Mathematics and its Applications, Vol. 23, Addison Wesley, Menlo Park1984. Zbl0567.35001MR747979
- CHAPMAN, S. J.- HOWISON, S. D.- OCKENDON, J. R., Macroscopic models for superconductivity, S.I.A.M. Rev., 34 (1992), 529-560. Zbl0769.73068MR1193011
- DANILYUK, I. I., On the Stefan problem, Russian Math. Surveys, 40 (1985), 157-223. Zbl0604.35080MR810813
- FASANO, A., Las Zonas Pastosas en el Problema de Stefan, Cuad. Inst. Mat. Beppo Levi, No. 13, Rosario1987. Zbl0642.35081MR914370
- FASANO, A., Esperienza di collaborazione con industrie su programmi a lungo termine, Boll. Un. Matem. Ital., 7-A (1997), 1-40. Zbl0973.00517
- FASANO, A., Phase transition with supercooling, Boll. Un. Matem. Ital., (8) (1998), 49-69. Zbl0903.35095MR1619031
- MAGENES, E., Problemi di Stefan bifase in piu variabili spaziali, Le Matematiche, 36 (1981), 65-108. Zbl0545.35096MR736797
- MAGENES, E., Stefan problems with a concentrated capacity, Boll. Un. Matem. Ital., (8) (1998), 71-81. Zbl0904.35103MR1619035
- NIEZGOÓLDKA, M., Stefan-like problems, In: Free Boundary Problems: Theory and Applications (A. Fasano, M. Primicerio, eds.). Pitman, Boston1983, pp. 321-347. MR714922
- OLEĬNIK, O. A.- PRIMICERIO, M.- RADKEVICH, E. V., Stefan-like problems, Meccanica, 28 (1993), 129-143. Zbl0786.76091
- PRIMICERIO, M., Problemi a contorno libero per l'equazione della diffusione, Rend. Sem. Mat. Univers. Politecn. Torino, 32 (1973-74), 183-206. Zbl0307.76048MR477466
- PRIMICERIO, M., Problemi di diffusione a frontiera libera, Boll. Un. Matem. Ital., 18-A (1981), 11-68. Zbl0468.35082
- RODRIGUES, J.-F., The variational inequality approach to the one-phase Stefan problem, Acta Applicandae Mathematicae, 8 (1987), 1-35. Zbl0653.35083MR871691
- TARZIA, D. A., A Bibliography on Moving-Free Boundary Problems for the Heat Diffusion Equation. The Stefan Problem, Progetto Nazionale M.P.I. «Equazioni di Evoluzione e Applicazioni Fisico-Matematiche», Firenze, 1988. Zbl0694.35221MR1007840
- VERDI, C., Numerical methods for phase transition problems, Boll. Un. Matem. Ital., (8) (1998), 83-108. Zbl0896.65064MR1619039
- VISINTIN, A., Introduction to the models of phase transitions, Bull. Un. Matem. Ital., I-B (1998), 1-47. Zbl0903.35097MR1619027
- WILSON, D. G.- SOLOMON, A. D.- TRENT, J. S., A Bibliography on Moving Boundary Problems with Key Word Index, Oak Ridge National Laboratory, 1979.
- A. BOSSAVIT-A. DAMLAMIAN-M. FRÉMOND (EDS.), Free Boundary Problems: Theory and Applications, Pitman, Boston1985.
- J. M. CHADAM-H. RASMUSSEN (EDS.), Emerging Applications in Free Boundary Problems, Longman, Harlow1993. MR1216352
- J. M. CHADAM-H. RASMUSSEN (eds.), Free Boundary Problems Involving Solids, Longman, Harlow1993. MR1216392
- J. M. CHADAM-H. RASMUSSEN (eds.), Free Boundary Problems in Fluid Flow with Applications, Longman, Harlow1993. MR1216373
- J. I. DIAZ-M. A. HERRERO-A. LIÑÁN, J. L. VÁZQUEZ (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow1995. MR1342322
- A. FASANO-M. PRIMICERIO (eds.), Free Boundary Problems: Theory and Applications, Pitman, Boston1983. Zbl0504.00012MR714939
- K.-H. HOFFMANN-J. SPREKELS (eds.), Free Boundary Problems: Theory and Applications, Longman, Harlow1990. Zbl0703.00015
- H. HOFFMANN-J. SPREKELS (eds.), Free Boundary Value Problems, Birkhäuser, Boston1990. Zbl0702.00021MR1111018
- N. KENMOCHI-M. NIEZGÓDKA-P. STRZELECKI (eds.), Nonlinear Analysis and Applications, Gakkotosho, Tokyo1996. MR1422923
- E. MAGENES (ed.), Free Boundary Problems, Istituto di Alta Matematica, Roma1980.
- M. NIEZGÓDKA-P. STRZELECKI (EDS.), Free Boundary Problems: Theory and Applications, Longman, Harlow1996. Zbl0856.00025MR1462964
- J. R. OCKENDON-W. R. HODGKINS (eds.), Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford1975. Zbl0295.76064
- D. G. WILSON-A. D. SOLOMON-P. T. BOGGS (eds.), Moving Boundary Problems, Academic Press, New York1978. Zbl0432.00011MR466887
- ATHANASSOPOULOS, I.- CAFFARELLI, L. A.- SALSA, S., Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems, Ann. Math., 143 (1996), 413-434. Zbl0853.35049MR1394964
- ATHANASSOPOULOS, I.- CAFFARELLI, L. A.- SALSA, S., Regularity of the free boundary in phase transition problems, Acta Math., 176 (1996). Zbl0891.35164
- ATHANASSOPOULOS, I.- CAFFARELLI, L. A.- SALSA, S., Phase transition problems of parabolic type: flat free boundaries are smooth, Comm. Pure Appl. Math., 51 (1998), 77-112. Zbl0924.35197MR1486632
- BAIOCCHI, C., Su un problema di frontiera libera connesso a questioni di idraulica, Ann. Mat. Pura Appl., 92 (1972), 107-127. Zbl0258.76069MR408443
- BAIOCCHI, C.- CAPELO, A., Variational and Quasivariational Inequalities, Applications to Free Boundary Problems, Wiley, Chichester1983. Zbl0551.49007MR745619
- BERGER, A. E.- BRÉZIS, H.- ROGERS, J. W., A numerical method for solving the problem , R.A.I.R.O., Analyse Numérique, 13 (1979), 297-312. Zbl0426.65052MR555381
- BERGER, A. E.- ROGERS, J. W., Some properties of the nonlinear semigroup for the problem , Nonlinear Analysis, T.M.A., 8 (1984), 909-939. Zbl0557.35129MR753767
- BRÉZIS, H., On some degenerate nonlinear parabolic equations, In: Nonlinear Functional Analysis (F. E. Browder, ed.). Proc. Symp. Pure Math., XVIIIA.M.S., Providence1970, pp. 28-38. Zbl0231.47034MR273468
- CAFFARELLI, L. A., The regularity of free boundaries in higher dimensions, Acta Math., 139 (1977), 155-184. Zbl0386.35046MR454350
- CAFFARELLI, L. A., Some aspects of the one-phase Stefan problem, Indiana Univ. Math. J., 27 (1978), 73-77. Zbl0393.35064MR466965
- CAFFARELLI, L. A.- EVANS, L. C., Continuity of the temperature in the two-phase Stefan problem, Arch. Rational Mech. Anal., 81 (1983), 199-220. Zbl0516.35080MR683353
- CAFFARELLI, L. A.- FRIEDMAN, A., Continuity of the temperature in the Stefan problem, Indiana Univ. Math. J., 28 (1979), 53-70. Zbl0406.35032MR523623
- CANNON, J. R.- HILL, C. D., On the infinite differentiability of the free boundary in a Stefan problem, J. Math. Anal. Appl., 22 (1968), 385-387. Zbl0167.10504MR225013
- DAMLAMIAN, A., Homogenization for eddy currents, Delft Progress Report, 6 (1981), 268-275. Zbl0483.35004
- DIBENEDETTO, E., Regularity results for the n-dimensional two-phase Stefan problem, Boll. Un. Mat. Ital. Suppl. (1980), 129-152. Zbl0458.35098MR677695
- DIBENEDETTO, E., Continuity of weak solutions to certain singular parabolic equations, Ann. Mat. Pura Appl., 121 (1982), 131-176. Zbl0503.35018MR663969
- DIBENEDETTO, E.- VESPRI, V., On the singular equation , Arch. Rational Mech. Anal., 132 (1995), 247-309. Zbl0849.35060MR1365831
- DONNELLY, J. D. P., A model for non-equilibrium thermodynamic processes involving phase changes, J. Inst. Math. Appl., 24 (1979), 425-438. Zbl0426.35060MR556152
- DUVAUT, G., Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degrés), C.R. Acad. Sci. Paris, Série I, 276-A (1973), 1461-1463. Zbl0258.35037MR328346
- DUVAUT, G., The solution of a two-phase Stefan by a variational inequality, In: Moving Boundary Problems in Heat Flow and Diffusion (J. R. Ockendon, W. R. Hodgkins, eds.), Clarendon Press, Oxford1975, pp. 173-181.
- EVANS, G. W., A note on the existence of a solution to a Stefan problem, Quart. Appl. Math., IX (1951), 185-193. Zbl0043.41101
- FASANO, A.- PRIMICERIO, M., General free boundary problems for the heat equation, J. Math. Anal. Appl.: I, 57 (1977), 694-723; II, 58 (1977), 202-231; III, 59 (1977), 1-14. Zbl0355.35037
- FASANO, A.- PRIMICERIO, M., Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions, J. Math. Anal. Appl., 72 (1979), 247-273. Zbl0421.35080MR552335
- FASANO, A.- PRIMICERIO, M., Phase-change with volumetric heat sources: Stefan's scheme vs. enthalpy formulation, Boll. Un. Mat. Ital. Suppl., 4 (1985), 131-149. Zbl0578.35087MR784301
- FASANO, A.- PRIMICERIO, M., Mushy regions with variable temperature in melting processes, Boll. Un. Mat. Ital., 4-B (1985), 601-626. Zbl0591.35088MR805431
- FASANO, A.- PRIMICERIO, M., A parabolic-hyperbolic free boundary problem, S.I.A.M. J. Math. Anal., 17 (1986), 67-73. Zbl0594.35092MR819213
- FASANO, A.- PRIMICERIO, M., A critical case for the solvability of Stefan-like problems, Math. Meth. Appl. Sci., 5 (1983), 84-96. Zbl0526.35078MR690897
- FASANO, A.- PRIMICERIO, M.- KAMIN, S., Regularity of weak solutions of one-dimensional two-phase Stefan problems, Ann. Mat. Pura Appl., 115 (1977), 341-348. Zbl0378.35008MR477460
- FRÉMOND, M., Variational formulation of the Stefan problem, coupled Stefan problem, frost propagation in porous media, In: Proc. Conf. Computational Methods in Nonlinear Mechanics (J. T. Oden, ed.). University of Texas, Austin (1974), pp. 341-349. Zbl0316.76063MR398299
- FRIEDMAN, A., Free boundary problems for parabolic equations. I, II, III, J. Math. Mech., 8 (1959), 499-517; 9 (1960), 19-66; 9 (1960), 327-345. Zbl0199.42301
- FRIEDMAN, A., Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs1964. Zbl0144.34903MR181836
- FRIEDMAN, A., The Stefan problem in several space variables, Trans. Amer. Math. Soc., 133 (1968), 51-87. Zbl0162.41903MR227625
- FRIEDMAN, A., One dimensional Stefan problems with non-monotone free boundary, Trans. Amer. Math. Soc., 133 (1968), 89-114. Zbl0162.42001MR227626
- FRIEDMAN, A., Analyticity of the free boundary for the Stefan problem, Arch. Rational Mech. Anal., 61 (1976), 97-125. Zbl0329.35034MR407452
- FRIEDMAN, A.- KINDERLEHRER, D., A one phase Stefan problem, Indiana Univ. Math. J., 25 (1975), 1005-1035. Zbl0334.49002MR385326
- GÖTZ, I.G.- ZALTZMAN, B. B., Nonincrease of mushy region in a nonhomogeneous Stefan problem, Quart. Appl. Math., XLIX (1991), 741-746. Zbl0756.35119MR1134749
- JIANG, L. S., The two-phase Stefan problem. I, II, Chinese Math., 4 (1963), 686-702; 5 (1964), 36-53. Zbl0149.31601
- KAMENOMOSTSKAYA, S., On the Stefan problem, Math. Sbornik, 53 (1961), 489-514 (Russian). Zbl0102.09301
- KINDERLEHRER, D.- NIRENBERG, L., Regularity in free boundary value problems, Ann. Scuola Norm. Sup. Pisa, 4 (1977), 373-391. Zbl0352.35023MR440187
- KINDERLEHRER, D.- NIRENBERG, L., The smoothness of the free boundary in the one-phase Stefan problem, Comm. Pure Appl. Math., 31 (1978), 257-282. Zbl0391.35060MR480348
- KOLODNER, I. I., Free boundary problem for the heat equation with applications to problems with change of phase, Comm. Pure Appl. Math., 10 (1957), 220-231. Zbl0070.43803
- LAMÉ, G., CLAYPERON, B.P., Mémoire sur la solidification par refroidissement d'un globe solide, Ann. Chem. Phys., 47 (1831), 250-256.
- LUCKHAUS, S., Solutions of the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, Euro. J. Appl. Math., 1 (1990), 101-111. Zbl0734.35159MR1117346
- MEIRMANOV, A. M., On the classical solvability of the Stefan problem, Soviet Math. Dokl., 20 (1979), 1426-1429. Zbl0498.35087
- MEIRMANOV, A. M., On the classical solution of the multidimensional Stefan problem for quasilinear parabolic equations, Math. U.S.S.R.-Sbornik, 40 (1981), 157-178. Zbl0467.35053
- MEIRMANOV, A. M., An example of nonexistence of a classical solution of the Stefan problem, Soviet Math. Dokl., 23 (1981), 564-566. Zbl0545.35097MR620870
- OLEĬNIK, O. A., A method of solution of the general Stefan problem, Soviet Math. Dokl., 1 (1960), 1350-1353. Zbl0131.09202MR125341
- PRIMICERIO, M., Mushy regions in phase-change problems, In: Applied Functional Analysis (R. Gorenflo, K.-H. Hoffmann, eds.). Lang, Frankfurt (1983), pp. 251-269. Zbl0518.35087MR685609
- J.-F. RODRIGUES (ed.), Mathematical Models for Phase Change Problems, Birkhäuser, Basel1989. Zbl0676.00021MR1038061
- RUBINSTEIN, L., On the determination of the position of the boundary which separates two phases in the one-dimensional problem of Stefan, Dokl. Acad. Nauk USSR, 58 (1947), 217-220. Zbl0032.13101MR22979
- RUBINSTEIN, L.- FASANO, A.- PRIMICERIO, M., Remarks on the analyticity of the free boundary for the one-dimensional Stefan problem, Ann. Mat. Pura Appl., 125 (1980), 295-311. Zbl0456.35096MR605212
- SCHAEFFER, D., A new proof of infinite differentiability of the free boundary in the Stefan problem, J. Differential Equations, 20 (1976), 266-269. Zbl0314.35044MR390499
- SESTINI, G., Esistenza di una soluzione in problemi analoghi a quello di Stefan, Rivista Mat. Univ. Parma, 3 (1952), 3-23; 8 (1958), 1-209. Zbl0048.43406
- SHOWALTER, R. E., Mathematical formulation of the Stefan problem, Int. J. Eng. Sc., 20 (1982), 909-912. Zbl0506.76103MR660566
- STEFAN, J., Über einige Probleme der Theorie der Wärmeleitung, Sitzungber., Wien, Akad. Mat. Natur., 98 (1889), 473-484. Also ibid. pp. 614-634, 965-983, 1418-1442. JFM21.1197.01
- VISINTIN, A., Two-scale Stefan problem with surface tension, In: Nonlinear Analysis and Applications (N. Kenmochi, M. Niezgódka, P. Strzelecki, eds.) (Gakkotosho, Tokyo1996), 405-424. Zbl0868.35144MR1422948
- VISINTIN, A., Two-scale model of phase transitions, Physica D, 106 (1997), 66-80. Zbl0935.80005MR1460449
- VISINTIN, A., Nucleation and mean curvature flow, Communications in P.D.E.s, 23 (1998), 17-35. Zbl0901.53045MR1608492
- ZIEMER, W. P., Interior and boundary continuity of weak solutions of degenerate parabolic equations, Trans. A.M.S., 271 (1982), 733-748. Zbl0506.35053MR654859
- BERTOTTI, G., Hysteresis in Magnetism, Academic Press, Boston1998.
- BROKATE, M., Optimale Steuerung von gewöhnlichen Differentialgleichungen mit Nichtlinearitäten vom Hysteresis-Typ, Lang, Frankfurt am Main (1987). English translation: Optimal control of ordinary differential equations with nonlinearities of hysteresis type. In: Automation and Remote Control, 52 (1991), 53 (1992). Zbl0691.49025MR1031251
- BROKATE, M.- SPREKELS, J., Hysteresis and Phase Transitions, Springer, Berlin1996 Zbl0951.74002MR1411908
- DELLA TORRE, E., Magnetic Hysteresis, IEEE Press, 1999.
- IVÁNYI, A., Hysteresis Models in Electromagnetic Computation, Akademḿiai Kiado, Budapest, 1997.
- KRASNOSEL'SKĬ, M. A.- POKROVSKIĬ, A. V., Systems with Hysteresis, Springer, Berlin1989 (Russian ed. Nauka, Moscow1983). Zbl0665.47038MR987431
- KREJČÍ, P., Convexity, Hysteresis and Dissipation in Hyperbolic Equations, Gakkotosho, Tokyo1997. Zbl1187.35003
- MAYERGOYZ, I. D., Mathematical Models of Hysteresis, Springer, New York1991. Zbl0723.73003MR1083150
- VISINTIN, A., Differential Models of Hysteresis, Springer, Berlin1994. Zbl0820.35004MR1329094
- BROKATE, M., Elastoplastic constitutive laws of nonlinear kinematic hardening type, In: Functional analysis with current applications in science, technology and industry (M. Brokate, A. H. Siddiqi, eds.), Longman, Harlow (1998), pp. 238-272. Zbl0911.73021MR1607891
- HUO, Y.- MUELLER, I., Non-equilibrium thermodynamics of pseudoelasticity, Cont. Mech. Thermodyn., 5 (1993), 163-204. Zbl0780.73006
- KRASNOSEL'SKIĬ, M. A., Equations with non-linearities of hysteresis type, VII Int. Konf. Nichtlin. Schwing., Berlin 1975; Abh. Akad. Wiss. DDR, 3 (1977), 437-458 (Russian). Zbl0406.93032
- KREJČÍ, P., Evolution variational inequalities and multidimensional hysteresis operators, In: Nonlinear differential equations (P. Drábek, P. Krejčí, P. Takáč, eds.) Research Notes in Mathematics, Chapman & Hall/CRC, London (1999), pp. 47-110. Zbl0949.47053
- MUELLER, I., Six lectures on shape memory, Proceedings of a Summer School held in Banff in 1995. AMS. CRM Proceedings and Lecture Notes, 13 (1998), pp. 125-161. Zbl0909.73013MR1619114
- MACKI, J. W.- NISTRI, P.- ZECCA, P., Mathematical models for hysteresis, S.I.A.M. Review, 35 (1993), 94-123. Zbl0771.34018MR1207799
- VISINTIN, A., Mathematical models of hysteresis, In: Topics in Nonsmooth Mechanics (J. J. Moreau, P. D. Panagiotopoulos, G. Strang, eds.), Birkhäuser, Basel1988, pp. 295-326. Zbl0656.73043MR957094
- VISINTIN, A., Mathematical models of hysteresis, In: Modelling and optimization of distributed parameter systems (K. Malanowski et al., ed.), Chapman and Hall, (1996), pp. 71-80 Zbl0906.93006MR1388519
- VISINTIN, A., Mathematical models of hysteresis. A survey, In: Nonlinear Partial Differential Equations. College de France. Vol. XIII (D. Cioranescu, J. L. Lions, eds.), Longman, Harlow (1998), pp. 327-338. Zbl1007.47034MR1773088
- VISINTIN, A., Six talks on hysteresis, Proceedings of a Summer School held in Banff in 1995. AMS. CRM Proceedings and Lecture Notes, 13 (1998), pp. 207-236. Zbl0918.35067MR1619117
- BROKATE, M.- DRESSLER, K.- KREJČÍ, P.- SEIDMAN, T. I.- TAVERNINI, L.- VISINTIN, A., Contributions to the session on Problems in Hysteresis, In: Nonlinear Analysis, Proceedings of the First World Congress of Nonlinear Analysts (ed. V. Laksmikantham), De Gruyter, Berlin (1996), 797-806. Zbl0858.47039
- BROKATE, M.- KENMOCHI, N.- MÜLLER, I.- RODRIGUES, J. F.- VERDI, C. (A. VISINTIN, ed.), Phase Transitions and Hysteresis, Lecture Notes in Mathematics, vol. 1584. Springer, Berlin1994. MR1321829
- A. VISINTIN (ed.), Models of Hysteresis, Proceedings of a meeting held in Trento in 1991. Longman, Harlow1993. Zbl0785.00016MR1235109
- BOSSAVIT, A.- EMSON, C.- MAYERGOYZ, I. D., Géométrie différentielle, éléments finis, modèles d'hystérésis, Eyrolles, Paris1991.
- BOUC, R., Solution périodique de l'équation de la ferrorésonance avec hystérésis, C.R. Acad. Sci. Paris, Serie A, 263 (1966), 497-499. Zbl0152.42103MR201106
- BOUC, R., Modèle mathématique d'hystérésis et application aux systèmes à un degré de liberté, These, Marseille1969. Zbl0237.73020
- BROKATE, M., Optimale Steuerung von gewohnlichen Differentialgleichungen mit Nichtlinearitaten vom Hysteresis-Typ, Habilitations Schrift. Lang, Frankfurt am Main1987. English translation: Optimal control of ordinary differential equations with nonlinearities of hysteresis type. In: Automation and Remote Control, 52 (1991) and 53 (1992). Zbl0691.49025MR1031251
- BROKATE, M., On a characterization of the Preisach model for hysteresis, Rend. Sem. Mat. Padova, 83 (1990), 153-163. Zbl0719.47053MR1066436
- CHERNORUTSKII., V.- RACHINSKII, D.: On uniqueness of an initial-problem for ODE with hysteresis, NoDEA, 4 (1997), 391-399. Zbl0882.34004MR1458534
- DAMLAMIAN, A.- VISINTIN, A., Une géneralisation vectorielle du modèle de Preisach pour l'hystérésis, C. R. Acad. Sci. Paris, Serie I, 297 (1983), 437-440. Zbl0546.35068MR732853
- DUHEM, P., The evolution of mechanics, Sijthoff and Noordhoff, Alphen aan den Rijn, 1980. Original edition: L'évolution de la méchanique. Joanin, Paris1903. Zbl0424.01002
- HILPERT, M., On uniqueness for evolution problems with hysteresis, In: Mathematical Models for Phase Change Problems (J. F. Rodrigues, ed.) (Birkhauser, Basel1989), 377-388. Zbl0701.35009MR1038080
- HOFFMANN, K.-H.- SPREKELS, J.- VISINTIN, A., Identification of hysteresis loops, J. Comp. Phys., 78 (1988), 215-230. Zbl0659.65125MR959083
- ISHLINSKIĬ, A.Y., Some applications of statistical methods to describing deformations of bodies, Izv. Akad. Nauk S.S.S.R., Techn. Ser., 9 (1944), 580-590 (Russian).
- MADELUNG, E., Uber Magnetisierung durch schnellverlaufende Strome und die, Wirkungsweise des Rutherford-Marconischen Magnetdetektors. Ann. Phys., 17 (1905), 861-890.
- KRASNOSEL’SKIĬ, M.A.- DARINSKIĬ, B. M.- EMELIN, I. V.- ZABREĬKO, P. P., LIFSIC, E. A. - POKROVSKIĬ, A. V., Hysterant operator, Soviet Math. Soviet Dokl., 11 (1970), 29-33. Zbl0212.58002
- MAYERGOYZ, I. D., Mathematical models of hysteresis, Phys. Rev. Letters, 56 (1986), 1518-1521.
- MAYERGOYZ, I. D., Mathematical models of hysteresis, I.E.E.E. Trans. Magn., 22 (1986), 603-608.
- MRÓZ, Z., On the description of anisotropic work-hardening, J. Mech. Phys. Solids, 15 (1967), 163-175.
- MÜLLER, I., A model for a body with shape-memory, Arch. Rational Mech. Anal., 70 (1979), 61-77. MR535632
- MÜLLER, I., On the size of hysteresis in pseudoelasticity, Continuum Mech. Thermodyn., 1 (1989), 125-142. MR1050819
- NÉEL, L., Theorie des lois d’aimantation de Lord Rayleigh. I. Les déplacements d’une paroi isolée; II. Multiples domaines et champ coercive, Cahiers de Physique, 12 (1942), 1-20; 13 (1943), 18-30.
- PRANDTL, L.: Spannungverteilung in plastischen Körpern, In: Proc. 1st Intern. Congr. Appl. Mech. Delft (1924), pp. 43-54.
- PRANDTL, L., Ein Gedankenmodell zur kinetischen Theorie der festen Körper, Z. Angew. Math. Mech., 8 (1928), 85-106. JFM54.0847.04
- PREISACH, F., Über die magnetische Nachwirkung, Z. Physik, 94 (1935), 277-302.
- RAYLEIGH, On the behaviour of iron and steel under the operation of feeble magnetic forces, Phil. Mag., 23 (1887), 225-248. JFM19.1131.04
- VERDI, C.- VISINTIN, A., Numerical approximation of hysteresis problems, I.M.A. J. Numer. Anal., 5 (1985), 447-463. Zbl0608.65082MR816068
- VERDI, C.- VISINTIN, A., Numerical approximation of the Preisach model for hysteresis, Math. Model. and Numer. Anal., 23 (1989), 335-356. Zbl0672.65115MR1001333
- VISINTIN, A., A model for hysteresis of distributed systems, Ann. Mat. Pura Appl., 131 (1982), 203-231. Zbl0494.35052MR681564
- VISINTIN, A., On the Preisach model for hysteresis, Nonlinear Analysis, T.M.A., 9 (1984), 977-996. Zbl0563.35007MR760191
- VISINTIN, A., Hysteresis and semigroups, In: Models of hysteresis (A. Visintin, ed.), Longman, Harlow (1993), pp. 192-206. Zbl0834.35033MR1235125
- VISINTIN, A., Modified Landau-Lifshitz equation for ferromagnetism, Physica B, 233 (1997), 365-369.
- WEISS, P.- DE FREUDENREICH, J., Etude de l’aimantation initiale en fonction de la température (suite et fin), Arch. Sci. Phys. Nat., (Genève), 42 (1916), 449-470.
- BARBU, V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden1976. Zbl0328.47035MR390843
- BÉNILAN, H., Equations d’Évolution dans un Espace de Banach Quelconque et Applications, Thèse, Orsay1972.
- BERTSCH, M.- PODIO-GUIDUGLI, P.- VALENTE, V., On the dynamics of deformable ferromagnets 1. Global weak solutions for soft ferromagnets at rest, Preprint, 1999. Zbl1097.74017
- BRÉZIS, H., Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland, Amsterdam1973. Zbl0252.47055MR348562
- BROWN, W. F. JR., Micromagnetics, Krieger, Huntington1978.
- CARSLAW, H. S.- JAEGER, J. C., Conduction of heat in solids, Clarendon Press and Oxford University Press, New York, 1988. Zbl0972.80500MR959730
- DUVAUT, G.- LIONS, J. L., Les Inéquations en Mécanique et en Physique, Dunod, Paris1972. Zbl0298.73001MR464857
- LANDAU, L.- LIFSHITZ, E., On the theory of dispersion of magnetic permeability in ferromagnetic bodies, Physik. Z. Sowietunion, 8 (1935), 153-169.
- LANDAU, L.- LIFSHITZ, E., Statistical physics, Pergamon Press, Oxford1969. Zbl0080.19702MR475051
- LIONS, J. L., Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris1969. Zbl0189.40603MR259693
- VISINTIN, A., On Landau-Lifshitz equations in ferromagnetism, Japan J. Appl. Math., 2 (1985), 69-84. Zbl0613.35018MR839320
- WEISS, P., L’hypothèse du champ moléculaire et la proprièté ferromagnétique, J. Physique, 6 (1907), 661-690.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.