The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Light paths with an odd number of vertices in polyhedral maps

Stanislav Jendroľ, Heinz-Jürgen Voss (2000)

Czechoslovak Mathematical Journal

Let P k be a path on k vertices. In an earlier paper we have proved that each polyhedral map G on any compact 2 -manifold 𝕄 with Euler characteristic χ ( 𝕄 ) 0 contains a path P k such that each vertex of this path has, in G , degree k 5 + 49 - 24 χ ( 𝕄 ) 2 . Moreover, this bound is attained for k = 1 or k 2 , k even. In this paper we prove that for each odd k 4 3 5 + 49 - 24 χ ( 𝕄 ) 2 + 1 , this bound is the best possible on infinitely many compact 2 -manifolds, but on infinitely many other compact 2 -manifolds the upper bound can be lowered to ( k - 1 3 ) 5 + 49 - 24 χ ( 𝕄 ) 2 .

Currently displaying 1 – 1 of 1

Page 1