Note on Simultaneity and the Eisenstein-Maxwell Field.
In [7], it is proved that all -natural metrics on tangent bundles of -dimensional Riemannian manifolds depend on arbitrary smooth functions on positive real numbers, whose number depends on and on the assumption that the base manifold is oriented, or non-oriented, respectively. The result was originally stated in [8] for the oriented case, but the smoothness was assumed and not explicitly proved. In this note, we shall prove that, both in the oriented and non-oriented cases, the functions generating...
This survey paper presents lecture notes from a series of four lectures addressed to a wide audience and it offers an introduction to several topics in conformal differential geometry. In particular, a very nice and gentle introduction to the conformal Riemannian structures themselves, flat or curved, is presented in the beginning. Then the behavior of the covariant derivatives under the rescaling of the metrics is described. This leads to Penrose’s local twistor transport which is introduced in...
Let be a smooth proper family of complex curves (i.e. family of Riemann surfaces), and a -bundle over with connection along the fibres . We construct a line bundle with connection on (also in cases when the connection on has regular singularities). We discuss the resulting mainly in the case . For instance when is the moduli space of line bundles with connection over a Riemann surface , , and is the Poincaré bundle over , we show that provides a prequantization of .