Il problema di Plateau in domini illimitati
We discuss conditions under which a symplectic 4-manifold has a compatible Kähler structure. The theory of -holomorphic embedded spheres is extended to the immersed case. As a consequence, it is shown that a symplectic 4-manifold which has two different minimal reductions must be the blow-up of a rational or ruled surface.
Dans cet article nous nous intéressons aux immersions isométriques minimales (resp. pluriharmoniques) définies sur une variété riemannienne munie d’une 2-forme parallèle non triviale à valeurs dans une variété riemannienne ou kählérienne de courbure isotrope négative (resp. positive). Les résultats que nous obtenons généralisent certains résultats bien connus de non existence et de rigidité concernant les immersions minimales et pluriharmoniques de variétés kählériennes dans les espaces formes réels...
In the joint paper of the author with K. P. Tod [J. Reine Angew. Math. 491, 183-198 (1997; Zbl 0876.53029)] they showed all local solutions of the Einstein-Weyl equations in three dimensions, where the background metric is homogeneous with unimodular isometry group. In particular, they proved that there are no solutions with Nil or Sol as background metric. In this note, these two special cases are presented.
We introduce an inequality for graph hypersurfaces and prove a decomposition theorem in case equality holds.
We characterize the boundary at infinity of a complex hyperbolic space as a compact Ptolemy space that satisfies four incidence axioms.