Displaying 381 – 400 of 763

Showing per page

Cônes asymptotiques et invariants de quasi-isométrie pour les espaces métriques hyperboliques

Cornelia Drutu (2001)

Annales de l’institut Fourier

On utilise l'équivalence due à M. Gromov entre l'hyperbolicité d'un espace métrique géodésique et le fait que ses cônes asymptotiques sont des arbres réels. Ce résultat permet tout d'abord de donner une nouvelle preuve du fait que l'inégalité isopérimétrique sous-quadratique implique l'hyperbolicité. Les avantages de cette preuve sont qu'elle est très courte et qu'elle utilise une seule propriété de la fonction aire de remplissage des courbes fermées, l'inégalité du quadrilatère....

Conference on Geometry and Mathematical Physics, Bulgaria, Zlatograd, 28.08-01.09.2005

Tsanov, V. (1997)

Serdica Mathematical Journal

List of ParticipantsOrganizing committee: Vasil Tsanov – Sofia University (Chairman), Harry Aleksiev – High School for Management and Laguages in Zlatograd (Local Organizer), Leon Farhy – Sofia University (Scientific Secretary), Emil Horozov – Sofia University, Ivailo Mladenov – Bulgarian Academy of Sciences, Angel Zhivkov – Sofia University.

Conformal and related changes of metric on the product of two almost contact metric manifolds.

David E. Blair, José Antonio Oubiña (1990)

Publicacions Matemàtiques

This paper studies conformal and related changes of the product metric on the product of two almost contact metric manifolds. It is shown that if one factor is Sasakian, the other is not, but that locally the second factor is of the type studied by Kenmotsu. The results are more general and given in terms of trans-Sasakian, α-Sasakian and β-Kenmotsu structures.

Conformal curvature for the normal bundle of a conformal foliation

Angel Montesinos (1982)

Annales de l'institut Fourier

It is proved that the normal bundle of a distribution 𝒱 on a riemannian manifold admits a conformal curvature C if and only if 𝒱 is a conformal foliation. Then is conformally flat if and only if C vanishes. Also, the Pontrjagin classes of can be expressed in terms of C .

Conformal deformations of the Riemannian metrics and homogeneous Riemannian spaces

Eugene D. Rodionov, Viktor V. Slavskii (2002)

Commentationes Mathematicae Universitatis Carolinae

In this paper we investigate one-dimensional sectional curvatures of Riemannian manifolds, conformal deformations of the Riemannian metrics and the structure of locally conformally homogeneous Riemannian manifolds. We prove that the nonnegativity of the one-dimensional sectional curvature of a homogeneous Riemannian space attracts nonnegativity of the Ricci curvature and we show that the inverse is incorrect with the help of the theorems O. Kowalski-S. Nikčevi'c [K-N], D. Alekseevsky-B. Kimelfeld...

Currently displaying 381 – 400 of 763