Conditions on the conharmonic curvature tensor of Kähler hypersurfaces in complex space forms.
On utilise l'équivalence due à M. Gromov entre l'hyperbolicité d'un espace métrique géodésique et le fait que ses cônes asymptotiques sont des arbres réels. Ce résultat permet tout d'abord de donner une nouvelle preuve du fait que l'inégalité isopérimétrique sous-quadratique implique l'hyperbolicité. Les avantages de cette preuve sont qu'elle est très courte et qu'elle utilise une seule propriété de la fonction aire de remplissage des courbes fermées, l'inégalité du quadrilatère....
List of ParticipantsOrganizing committee: Vasil Tsanov – Sofia University (Chairman), Harry Aleksiev – High School for Management and Laguages in Zlatograd (Local Organizer), Leon Farhy – Sofia University (Scientific Secretary), Emil Horozov – Sofia University, Ivailo Mladenov – Bulgarian Academy of Sciences, Angel Zhivkov – Sofia University.
This paper studies conformal and related changes of the product metric on the product of two almost contact metric manifolds. It is shown that if one factor is Sasakian, the other is not, but that locally the second factor is of the type studied by Kenmotsu. The results are more general and given in terms of trans-Sasakian, α-Sasakian and β-Kenmotsu structures.
It is proved that the normal bundle of a distribution on a riemannian manifold admits a conformal curvature if and only if is a conformal foliation. Then is conformally flat if and only if vanishes. Also, the Pontrjagin classes of can be expressed in terms of .
In this paper we investigate one-dimensional sectional curvatures of Riemannian manifolds, conformal deformations of the Riemannian metrics and the structure of locally conformally homogeneous Riemannian manifolds. We prove that the nonnegativity of the one-dimensional sectional curvature of a homogeneous Riemannian space attracts nonnegativity of the Ricci curvature and we show that the inverse is incorrect with the help of the theorems O. Kowalski-S. Nikčevi'c [K-N], D. Alekseevsky-B. Kimelfeld...