On some class of pseudosymmetric warped products
We present curvature properties of pseudosymmetry type of some warped products of semi-Riemannian spaces of constant curvature.
We present curvature properties of pseudosymmetry type of some warped products of semi-Riemannian spaces of constant curvature.
In one of his papers, C. Viterbo defined a distance on the set of Hamiltonian diffeomorphisms of endowed with the standard symplectic form . We study the completions of this space for the topology induced by Viterbo’s distance and some others derived from it, we study their different inclusions and give some of their properties. In particular, we give a convergence criterion for these distances that allows us to prove that the completions contain non-ordinary elements, as for example, discontinuous...
Two significant directions in the development of jet calculus are showed. First, jets are generalized to so-called quasijets. Second, jets of foliated and multifoliated manifold morphisms are presented. Although the paper has mainly a survey character, it also includes new results: jets modulo multifoliations are introduced and their relation to (R,S,Q)-jets is demonstrated.
For every two-dimensional manifold M with locally symmetric linear connection ∇, endowed also with ∇-parallel volume element, we construct a flat connection on some principal fibre bundle P(M,G). Associated with - satisfying some particular conditions - local basis of TM local connection form of such a connection is an R(G)-valued 1-form build from the dual basis ω1, ω2 and from the local connection form ω of ▽. The structural equations of (M,∇) are equivalent to the condition dΩ-Ω∧Ω=0. This work...
Solutions of the P. J. Ryan problem as well as investigations of curvature properties of Cartan hypersurfaces and Ricci-pseudosymmetric hypersurfaces lead to curvature identities holding on every hypersurface M isometrically immersed in a semi-Riemannian space form. These identities, under some assumptions, give rises to new generalized Einstein metric conditions on M. We investigate hypersurfaces satisfying such curvature conditions.
Real affine hypersurfaces of the complex space with a J-tangent transversal vector field and an induced almost contact structure (φ,ξ,η) are studied. Some properties of the induced almost contact structures are proved. In particular, we prove some properties of the induced structure when the distribution is involutive. Some constraints on a shape operator when the induced almost contact structure is either normal or ξ-invariant are also given.