The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
1389
In this survey article we shall summarise some of the recent progress that has occurred in the study of topological games as well as their applications to abstract analysis. The topics given here do not necessarily represent the most important problems from the area of topological games, but rather, they represent a selection of problems that are of interest to the authors.
We prove an analogue to Dordal’s result in P.L. Dordal, A model in which the base-matrix tree cannot have cofinal branches, J. Symbolic Logic 52 (1980), 651–664. He obtained a model of ZFC in which there is a tree -base for with no branches yet of height . We establish that this is also possible for using a natural modification of Mathias forcing.
We introduce a general notion of covering property, of which many classical definitions are particular instances. Notions of closure under various sorts of convergence, or, more generally, under taking kinds of accumulation points, are shown to be equivalent to a covering property in the sense considered here (Corollary 3.10). Conversely, every covering property is equivalent to the existence of appropriate kinds of accumulation points for arbitrary sequences on some fixed index set (Corollary 3.5)....
We prove a dichotomy theorem for remainders in compactifications of homogeneous spaces: given a homogeneous space , every remainder of is either realcompact and meager or Baire. In addition we show that two other recent dichotomy theorems for remainders of topological groups due to Arhangel’skii cannot be extended to homogeneous spaces.
A space X is absolutely strongly star-Hurewicz if for each sequence (Un :n ∈ℕ/ of open covers of X and each dense subset D of X, there exists a sequence (Fn :n ∈ℕ/ of finite subsets of D such that for each x ∈X, x ∈St(Fn; Un) for all but finitely many n. In this paper, we investigate the relationships between absolutely strongly star-Hurewicz spaces and related spaces, and also study topological properties of absolutely strongly star-Hurewicz spaces.
We show that AC is equivalent to the assertion that every compact completely regular topology can be extended to a compact Tychonoff topology.
Currently displaying 101 –
120 of
1389