The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
154
We introduce a general notion of covering property, of which many classical definitions are particular instances. Notions of closure under various sorts of convergence, or, more generally, under taking kinds of accumulation points, are shown to be equivalent to a covering property in the sense considered here (Corollary 3.10). Conversely, every covering property is equivalent to the existence of appropriate kinds of accumulation points for arbitrary sequences on some fixed index set (Corollary 3.5)....
We prove a dichotomy theorem for remainders in compactifications of homogeneous spaces: given a homogeneous space , every remainder of is either realcompact and meager or Baire. In addition we show that two other recent dichotomy theorems for remainders of topological groups due to Arhangel’skii cannot be extended to homogeneous spaces.
A space X is absolutely strongly star-Hurewicz if for each sequence (Un :n ∈ℕ/ of open covers of X and each dense subset D of X, there exists a sequence (Fn :n ∈ℕ/ of finite subsets of D such that for each x ∈X, x ∈St(Fn; Un) for all but finitely many n. In this paper, we investigate the relationships between absolutely strongly star-Hurewicz spaces and related spaces, and also study topological properties of absolutely strongly star-Hurewicz spaces.
We show that AC is equivalent to the assertion that every compact completely regular topology can be extended to a compact Tychonoff topology.
We study topological spaces that can be represented as the union of a finite collection of dense metrizable subspaces. The assumption that the subspaces are dense in the union plays a crucial role below. In particular, Example 3.1 shows that a paracompact space which is the union of two dense metrizable subspaces need not be a -space. However, if a normal space is the union of a finite family of dense subspaces each of which is metrizable by a complete metric, then is also metrizable by...
We prove that any topological group of a non-measurable cardinality is hereditarily paracompact and strongly σ-discrete as soon as it is submaximal. Consequently, such a group is zero-dimensional. Examples of uncountable maximal separable spaces are constructed in ZFC.
Currently displaying 101 –
120 of
154