The search session has expired. Please query the service again.
The class of -spaces is studied in detail. It includes, in particular, all Čech-complete spaces, Lindelöf -spaces, metrizable spaces with the weight , but countable non-metrizable spaces and some metrizable spaces are not in it. It is shown that -spaces are in a duality with Lindelöf -spaces: is an -space if and only if some (every) remainder of in a compactification is a Lindelöf -space [Arhangel’skii A.V., Remainders of metrizable and close to metrizable spaces, Fund. Math. 220 (2013),...
This paper presents a new consistent example of a relatively normal subspace which is not Tychonoff.
Let G be a paratopological group. Then G is said to be pseudobounded (resp. ω-pseudobounded) if for every neighbourhood V of the identity e in G, there exists a natural number n such that G = Vn (resp.we have G = ∪ n∈N Vn). We show that every feebly compact (2-pseudocompact) pseudobounded (ω-pseudobounded) premeager paratopological group is a topological group. Also,we prove that if G is a totally ω-pseudobounded paratopological group such that G is a Lusin space, then is G a topological group....
Let be a topological property. A space is said to be star P if whenever is an open cover of , there exists a subspace with property such that . In this note, we construct a Tychonoff pseudocompact SCE-space which is not star Lindelöf, which gives a negative answer to a question of Rojas-Sánchez and Tamariz-Mascarúa.
In this note we first give a summary that on property of a remainder of a non-locally compact topological group in a compactification makes the remainder and the topological group all separable and metrizable. If a non-locally compact topological group has a compactification such that the remainder of belongs to , then and are separable and metrizable, where is a class of spaces which satisfies the following conditions: (1) if , then every compact subset of the space is a...
We study topological spaces that can be represented as the union of a finite collection of dense metrizable subspaces. The assumption that the subspaces are dense in the union plays a crucial role below. In particular, Example 3.1 shows that a paracompact space which is the union of two dense metrizable subspaces need not be a -space. However, if a normal space is the union of a finite family of dense subspaces each of which is metrizable by a complete metric, then is also metrizable by...
We prove for a subspace of a -space , is (strictly) Aull-paracompact in and is Hausdorff in if and only if is strongly star-normal in . This result provides affirmative answers to questions of A.V. Arhangel’skii–I.Ju. Gordienko [3] and of A.V. Arhangel’skii [2].
Currently displaying 1 –
10 of
10