The search session has expired. Please query the service again.
Following Preuss' general connectedness theory in topological categories, a connectedness concept for approach spaces is introduced, which unifies topological connectedness in the setting of topological spaces, and Cantor-connectedness in the setting of metric spaces.
We prove that a continuum X is tree-like (resp. circle-like, chainable) if and only if for each open cover 𝓤₄ = {U₁,U₂,U₃,U₄} of X there is a 𝓤₄-map f: X → Y onto a tree (resp. onto the circle, onto the interval). A continuum X is an acyclic curve if and only if for each open cover 𝓤₃ = {U₁,U₂,U₃} of X there is a 𝓤₃-map f: X → Y onto a tree (or the interval [0,1]).
A topological space is non-separably connected if it is connected but all of its connected separable subspaces are singletons. We show that each connected sequential topological space X is the image of a non-separably connected complete metric space X under a monotone quotient map. The metric of the space X is economical in the sense that for each infinite subspace A ⊂ X the cardinality of the set does not exceed the density of A, .
The construction of the space X determines a functor : Top...
A non-connected, Hausdorff space with a countable network has a connected Hausdorff-subtopology iff the space is not-H-closed. This result answers two questions posed by Tkačenko, Tkachuk, Uspenskij, and Wilson [Comment. Math. Univ. Carolinae 37 (1996), 825–841]. A non-H-closed, Hausdorff space with countable -weight and no connected, Hausdorff subtopology is provided.
It is shown that both the free topological group and the free Abelian topological group on a connected locally connected space are locally connected. For the Graev’s modification of the groups and , the corresponding result is more symmetric: the groups and are connected and locally connected if is. However, the free (Abelian) totally bounded group (resp., ) is not locally connected no matter how “good” a space is. The above results imply that every non-trivial continuous homomorphism...
In this paper we introduce a connected topology T on the set ℕ of positive integers whose base consists of all arithmetic progressions connected in Golomb’s topology. It turns out that all arithmetic progressions which are connected in the topology T form a basis for Golomb’s topology. Further we examine connectedness of arithmetic progressions in the division topology T′ on ℕ which was defined by Rizza in 1993. Immediate consequences of these studies are results concerning local connectedness of...
Currently displaying 1 –
20 of
27