The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 4

Displaying 61 – 70 of 70

Showing per page

An observation on spaces with a zeroset diagonal

Wei-Feng Xuan (2020)

Mathematica Bohemica

We say that a space X has the discrete countable chain condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable. A space X has a zeroset diagonal if there is a continuous mapping f : X 2 [ 0 , 1 ] with Δ X = f - 1 ( 0 ) , where Δ X = { ( x , x ) : x X } . In this paper, we prove that every first countable DCCC space with a zeroset diagonal has cardinality at most 𝔠 .

Applications of limited information strategies in Menger's game

Steven Clontz (2017)

Commentationes Mathematicae Universitatis Carolinae

As shown by Telgársky and Scheepers, winning strategies in the Menger game characterize σ -compactness amongst metrizable spaces. This is improved by showing that winning Markov strategies in the Menger game characterize σ -compactness amongst regular spaces, and that winning strategies may be improved to winning Markov strategies in second-countable spaces. An investigation of 2-Markov strategies introduces a new topological property between σ -compact and Menger spaces.

Aull-paracompactness and strong star-normality of subspaces in topological spaces

Kaori Yamazaki (2004)

Commentationes Mathematicae Universitatis Carolinae

We prove for a subspace Y of a T 1 -space X , Y is (strictly) Aull-paracompact in X and Y is Hausdorff in X if and only if Y is strongly star-normal in X . This result provides affirmative answers to questions of A.V. Arhangel’skii–I.Ju. Gordienko [3] and of A.V. Arhangel’skii [2].

Currently displaying 61 – 70 of 70

Previous Page 4