The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A space is said to have the Rothberger property (or simply is Rothberger) if for every sequence of open covers of , there exists for each such that . For any , necessary and sufficient conditions are obtained for to have the Rothberger property when is a Mrówka mad family and, assuming CH (the Continuum Hypothesis), we prove the existence of a maximal almost disjoint family for which the space is Rothberger for all .
We study those compactifications of a space such that every autohomeomorphism of the space can be continuously extended over the compactification. These are called H-compactifications. Van Douwen proved that there are exactly three H-compactifications of the real line. We prove that there exist only two H-compactifications of Euclidean spaces of higher dimension. Next we show that there are 26 H-compactifications of a countable sum of real lines and 11 H-compactifications of a countable sum of Euclidean...
This paper considers totally bounded quasi-uniformities and quasi-proximities for frames and shows that for a given quasi-proximity on a frame there is a totally bounded quasi-uniformity on that is the coarsest quasi-uniformity, and the only totally bounded quasi-uniformity, that determines . The constructions due to B. Banaschewski and A. Pultr of the Cauchy spectrum and the compactification of a uniform frame are meaningful for quasi-uniform frames. If is a totally bounded quasi-uniformity...
Totally nonremote points in are constructed. The number of these points is .
Currently displaying 21 –
36 of
36