The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 6 of 6

Showing per page

More on tie-points and homeomorphism in ℕ*

Alan Dow, Saharon Shelah (2009)

Fundamenta Mathematicae

A point x is a (bow) tie-point of a space X if X∖x can be partitioned into (relatively) clopen sets each with x in its closure. We denote this as X = A x B where A, B are the closed sets which have a unique common accumulation point x. Tie-points have appeared in the construction of non-trivial autohomeomorphisms of βℕ = ℕ* (by Veličković and Shelah Steprans) and in the recent study (by Levy and Dow Techanie) of precisely 2-to-1 maps on ℕ*. In these cases the tie-points have been the unique fixed point...

More on κ -Ohio completeness

D. Basile (2011)

Commentationes Mathematicae Universitatis Carolinae

We study closed subspaces of κ -Ohio complete spaces and, for κ uncountable cardinal, we prove a characterization for them. We then investigate the behaviour of products of κ -Ohio complete spaces. We prove that, if the cardinal κ + is endowed with either the order or the discrete topology, the space ( κ + ) κ + is not κ -Ohio complete. As a consequence, we show that, if κ is less than the first weakly inaccessible cardinal, then neither the space ω κ + , nor the space κ + is κ -Ohio complete.

Currently displaying 1 – 6 of 6

Page 1