The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

Functionally countable subalgebras and some properties of the Banaschewski compactification

A. R. Olfati (2016)

Commentationes Mathematicae Universitatis Carolinae

Let X be a zero-dimensional space and C c ( X ) be the set of all continuous real valued functions on X with countable image. In this article we denote by C c K ( X ) (resp., C c ψ ( X ) ) the set of all functions in C c ( X ) with compact (resp., pseudocompact) support. First, we observe that C c K ( X ) = O c β 0 X X (resp., C c ψ ( X ) = M c β 0 X υ 0 X ), where β 0 X is the Banaschewski compactification of X and υ 0 X is the -compactification of X . This implies that for an -compact space X , the intersection of all free maximal ideals in C c ( X ) is equal to C c K ( X ) , i.e., M c β 0 X X = C c K ( X ) . By applying methods of functionally...

Functions that map cozerosets to cozerosets

Suzanne Larson (2007)

Commentationes Mathematicae Universitatis Carolinae

A function f mapping the topological space X to the space Y is called a z-open function if for every cozeroset neighborhood H of a zeroset Z in X , the image f ( H ) is a neighborhood of cl Y ( f ( Z ) ) in Y . We say f has the z-separation property if whenever U , V are cozerosets and Z is a zeroset of X such that U Z V , there is a zeroset Z ' of Y such that f ( U ) Z ' f ( V ) . A surjective function is z-open if and only if it maps cozerosets to cozerosets and has the z-separation property. We investigate z-open functions and other functions...

Currently displaying 1 – 5 of 5

Page 1